gb_test_utils.py 12.3 KB
Newer Older
1
2
import os

3
import dgl
4
import dgl.graphbolt as gb
5

6
7
import numpy as np
import pandas as pd
8
9
10
11
import scipy.sparse as sp
import torch


12
def rand_csc_graph(N, density, bidirection_edge=False):
13
    adj = sp.random(N, N, density)
14
15
    if bidirection_edge:
        adj = adj + adj.T
16
17
18
19
20
    adj = adj.tocsc()

    indptr = torch.LongTensor(adj.indptr)
    indices = torch.LongTensor(adj.indices)

21
    graph = gb.fused_csc_sampling_graph(indptr, indices)
22
23

    return graph
24
25
26
27
28
29
30
31
32
33
34


def random_homo_graph(num_nodes, num_edges):
    csc_indptr = torch.randint(0, num_edges, (num_nodes + 1,))
    csc_indptr = torch.sort(csc_indptr)[0]
    csc_indptr[0] = 0
    csc_indptr[-1] = num_edges
    indices = torch.randint(0, num_nodes, (num_edges,))
    return csc_indptr, indices


35
def get_type_to_id(num_ntypes, num_etypes):
36
37
38
39
40
41
42
    ntypes = {f"n{i}": i for i in range(num_ntypes)}
    etypes = {}
    count = 0
    for n1 in range(num_ntypes):
        for n2 in range(n1, num_ntypes):
            if count >= num_etypes:
                break
43
            etypes.update({f"n{n1}:e{count}:n{n2}": count})
44
            count += 1
45
    return ntypes, etypes
46
47


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes):
    ntypes = {f"n{i}": num_nodes // num_ntypes for i in range(num_ntypes)}
    if num_nodes % num_ntypes != 0:
        ntypes["n0"] += num_nodes % num_ntypes
    etypes = []
    count = 0
    while count < num_etypes:
        for n1 in range(num_ntypes):
            for n2 in range(num_ntypes):
                if count >= num_etypes:
                    break
                etypes.append((f"n{n1}", f"e{count}", f"n{n2}"))
                count += 1
    return ntypes, etypes


64
def random_hetero_graph(num_nodes, num_edges, num_ntypes, num_etypes):
65
66
67
68
69
70
    ntypes, etypes = get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes)
    edges = {}
    for step, etype in enumerate(etypes):
        src_ntype, _, dst_ntype = etype
        num_e = num_edges // num_etypes + (
            0 if step != 0 else num_edges % num_etypes
71
        )
72
73
74
75
76
77
78
79
80
81
82
83
84
        if ntypes[src_ntype] == 0 or ntypes[dst_ntype] == 0:
            continue
        src = torch.randint(0, ntypes[src_ntype], (num_e,))
        dst = torch.randint(0, ntypes[dst_ntype], (num_e,))

        edges[etype] = (src, dst)

    gb_g = gb.from_dglgraph(dgl.heterograph(edges, ntypes))
    return (
        gb_g.csc_indptr,
        gb_g.indices,
        gb_g.node_type_offset,
        gb_g.type_per_edge,
85
86
        gb_g.node_type_to_id,
        gb_g.edge_type_to_id,
87
    )
88
89
90


def random_homo_graphbolt_graph(
91
    test_dir, dataset_name, num_nodes, num_edges, num_classes, edge_fmt="csv"
92
93
94
):
    """Generate random graphbolt version homograph"""
    # Generate random edges.
95
96
97
98
    nodes = np.repeat(np.arange(num_nodes, dtype=np.int64), 5)
    neighbors = np.random.randint(
        0, num_nodes, size=(num_edges), dtype=np.int64
    )
99
100
    edges = np.stack([nodes, neighbors], axis=1)
    os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
101
102
103
104
    assert edge_fmt in [
        "numpy",
        "csv",
    ], "Only numpy and csv are supported for edges."
105
    if edge_fmt == "csv":
106
        # Write into edges/edge.csv
107
        edges_DataFrame = pd.DataFrame(edges, columns=["src", "dst"])
108
        edge_path = os.path.join("edges", "edge.csv")
109
        edges_DataFrame.to_csv(
110
111
112
113
114
            os.path.join(test_dir, edge_path),
            index=False,
            header=False,
        )
    else:
115
        # Write into edges/edge.npy
116
117
118
        edges = edges.T
        edge_path = os.path.join("edges", "edge.npy")
        np.save(os.path.join(test_dir, edge_path), edges)
119
120

    # Generate random graph edge-feats.
121
    edge_feats = np.random.rand(num_edges, num_classes)
122
123
124
125
126
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    edge_feat_path = os.path.join("data", "edge-feat.npy")
    np.save(os.path.join(test_dir, edge_feat_path), edge_feats)

    # Generate random node-feats.
127
128
129
130
    if num_classes == 1:
        node_feats = np.random.rand(num_nodes)
    else:
        node_feats = np.random.rand(num_nodes, num_classes)
131
132
133
134
135
136
137
138
139
140
141
    node_feat_path = os.path.join("data", "node-feat.npy")
    np.save(os.path.join(test_dir, node_feat_path), node_feats)

    # Generate train/test/valid set.
    assert num_nodes % 4 == 0, "num_nodes must be divisible by 4"
    each_set_size = num_nodes // 4
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
    train_pairs = (
        np.arange(each_set_size),
        np.arange(each_set_size, 2 * each_set_size),
    )
142
    train_data = np.vstack(train_pairs).T.astype(edges.dtype)
143
144
145
146
147
148
149
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), train_data)

    validation_pairs = (
        np.arange(each_set_size, 2 * each_set_size),
        np.arange(2 * each_set_size, 3 * each_set_size),
    )
150
    validation_data = np.vstack(validation_pairs).T.astype(edges.dtype)
151
152
153
154
155
156
157
    validation_path = os.path.join("set", "validation.npy")
    np.save(os.path.join(test_dir, validation_path), validation_data)

    test_pairs = (
        np.arange(2 * each_set_size, 3 * each_set_size),
        np.arange(3 * each_set_size, 4 * each_set_size),
    )
158
    test_data = np.vstack(test_pairs).T.astype(edges.dtype)
159
160
161
162
163
    test_path = os.path.join("set", "test.npy")
    np.save(os.path.join(test_dir, test_path), test_data)

    yaml_content = f"""
        dataset_name: {dataset_name}
164
        graph: # Graph structure and required attributes.
165
166
167
            nodes:
                - num: {num_nodes}
            edges:
168
                - format: {edge_fmt}
169
170
                  path: {edge_path}
            feature_data:
171
172
173
174
175
176
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: true
                  path: {node_feat_path}
177
178
179
180
181
182
183
184
185
186
187
                - domain: edge
                  type: null
                  name: feat
                  format: numpy
                  in_memory: true
                  path: {edge_feat_path}
        feature_data:
            - domain: node
              type: null
              name: feat
              format: numpy
188
              in_memory: true
189
              path: {node_feat_path}
190
191
192
193
194
            - domain: edge
              type: null
              name: feat
              format: numpy
              path: {edge_feat_path}
195
        tasks:
196
          - name: link_prediction
197
198
            num_classes: {num_classes}
            train_set:
199
              - type: null
200
                data:
201
202
203
                  - name: node_pairs
                    format: numpy
                    in_memory: true
204
205
                    path: {train_path}
            validation_set:
206
              - type: null
207
                data:
208
209
210
                  - name: node_pairs
                    format: numpy
                    in_memory: true
211
212
                    path: {validation_path}
            test_set:
213
              - type: null
214
                data:
215
216
217
                  - name: node_pairs
                    format: numpy
                    in_memory: true
218
219
220
                    path: {test_path}
    """
    return yaml_content
221
222


223
def generate_raw_data_for_hetero_dataset(
224
    test_dir, dataset_name, num_nodes, num_edges, num_classes, edge_fmt="csv"
225
226
227
228
229
230
231
232
):
    # Generate edges.
    edges_path = {}
    for etype, num_edge in num_edges.items():
        src_ntype, etype_str, dst_ntype = etype
        src = torch.randint(0, num_nodes[src_ntype], (num_edge,))
        dst = torch.randint(0, num_nodes[dst_ntype], (num_edge,))
        os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
233
234
235
236
        assert edge_fmt in [
            "numpy",
            "csv",
        ], "Only numpy and csv are supported for edges."
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        if edge_fmt == "csv":
            # Write into edges/edge.csv
            edges = pd.DataFrame(
                np.stack([src, dst], axis=1), columns=["src", "dst"]
            )
            edge_path = os.path.join("edges", f"{etype_str}.csv")
            edges.to_csv(
                os.path.join(test_dir, edge_path),
                index=False,
                header=False,
            )
        else:
            edges = np.stack([src, dst], axis=1).T
            edge_path = os.path.join("edges", f"{etype_str}.npy")
            np.save(os.path.join(test_dir, edge_path), edges)
252
253
254
255
256
257
258
259
260
261
262
        edges_path[etype_str] = edge_path

    # Generate node features.
    node_feats_path = {}
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    for ntype, num_node in num_nodes.items():
        node_feat_path = os.path.join("data", f"{ntype}-feat.npy")
        node_feats = np.random.rand(num_node, num_classes)
        np.save(os.path.join(test_dir, node_feat_path), node_feats)
        node_feats_path[ntype] = node_feat_path

263
264
265
266
267
268
269
270
271
272
    # Generate edge features.
    edge_feats_path = {}
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    for etype, num_edge in num_edges.items():
        src_ntype, etype_str, dst_ntype = etype
        edge_feat_path = os.path.join("data", f"{etype_str}-feat.npy")
        edge_feats = np.random.rand(num_edge, num_classes)
        np.save(os.path.join(test_dir, edge_feat_path), edge_feats)
        edge_feats_path[etype_str] = edge_feat_path

273
274
    # Generate train/test/valid set.
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
275
    user_ids = torch.arange(num_nodes["user"])
276
    np.random.shuffle(user_ids.numpy())
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    num_train = int(num_nodes["user"] * 0.6)
    num_validation = int(num_nodes["user"] * 0.2)
    num_test = num_nodes["user"] - num_train - num_validation
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), user_ids[:num_train])
    validation_path = os.path.join("set", "validation.npy")
    np.save(
        os.path.join(test_dir, validation_path),
        user_ids[num_train : num_train + num_validation],
    )
    test_path = os.path.join("set", "test.npy")
    np.save(
        os.path.join(test_dir, test_path),
        user_ids[num_train + num_validation :],
    )

    yaml_content = f"""
        dataset_name: {dataset_name}
295
        graph: # Graph structure and required attributes.
296
297
298
299
300
301
302
          nodes:
            - type: user
              num: {num_nodes["user"]}
            - type: item
              num: {num_nodes["item"]}
          edges:
            - type: "user:follow:user"
303
              format: {edge_fmt}
304
305
              path: {edges_path["follow"]}
            - type: "user:click:item"
306
              format: {edge_fmt}
307
              path: {edges_path["click"]}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
          feature_data:
            - domain: node
              type: user
              name: feat
              format: numpy
              in_memory: true
              path: {node_feats_path["user"]}
            - domain: node
              type: item
              name: feat
              format: numpy
              in_memory: true
              path: {node_feats_path["item"]}
            - domain: edge
              type: "user:follow:user"
              name: feat
              format: numpy
              in_memory: true
              path: {edge_feats_path["follow"]}
            - domain: edge
              type: "user:click:item"
              name: feat
              format: numpy
              in_memory: true
              path: {edge_feats_path["click"]}
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        feature_data:
          - domain: node
            type: user
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["user"]}
          - domain: node
            type: item
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["item"]}
        tasks:
          - name: node_classification
            num_classes: {num_classes}
            train_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {train_path}
            validation_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {validation_path}
            test_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {test_path}
    """

    yaml_file = os.path.join(test_dir, "metadata.yaml")
    with open(yaml_file, "w") as f:
        f.write(yaml_content)