gb_test_utils.py 10 KB
Newer Older
1
2
import os

3
import dgl
4
import dgl.graphbolt as gb
5

6
7
import numpy as np
import pandas as pd
8
9
10
11
import scipy.sparse as sp
import torch


12
def rand_csc_graph(N, density, bidirection_edge=False):
13
    adj = sp.random(N, N, density)
14
15
    if bidirection_edge:
        adj = adj + adj.T
16
17
18
19
20
    adj = adj.tocsc()

    indptr = torch.LongTensor(adj.indptr)
    indices = torch.LongTensor(adj.indices)

21
    graph = gb.fused_csc_sampling_graph(indptr, indices)
22
23

    return graph
24
25
26
27
28
29
30
31
32
33
34


def random_homo_graph(num_nodes, num_edges):
    csc_indptr = torch.randint(0, num_edges, (num_nodes + 1,))
    csc_indptr = torch.sort(csc_indptr)[0]
    csc_indptr[0] = 0
    csc_indptr[-1] = num_edges
    indices = torch.randint(0, num_nodes, (num_edges,))
    return csc_indptr, indices


35
def get_type_to_id(num_ntypes, num_etypes):
36
37
38
39
40
41
42
    ntypes = {f"n{i}": i for i in range(num_ntypes)}
    etypes = {}
    count = 0
    for n1 in range(num_ntypes):
        for n2 in range(n1, num_ntypes):
            if count >= num_etypes:
                break
43
            etypes.update({f"n{n1}:e{count}:n{n2}": count})
44
            count += 1
45
    return ntypes, etypes
46
47


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes):
    ntypes = {f"n{i}": num_nodes // num_ntypes for i in range(num_ntypes)}
    if num_nodes % num_ntypes != 0:
        ntypes["n0"] += num_nodes % num_ntypes
    etypes = []
    count = 0
    while count < num_etypes:
        for n1 in range(num_ntypes):
            for n2 in range(num_ntypes):
                if count >= num_etypes:
                    break
                etypes.append((f"n{n1}", f"e{count}", f"n{n2}"))
                count += 1
    return ntypes, etypes


64
def random_hetero_graph(num_nodes, num_edges, num_ntypes, num_etypes):
65
66
67
68
69
70
    ntypes, etypes = get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes)
    edges = {}
    for step, etype in enumerate(etypes):
        src_ntype, _, dst_ntype = etype
        num_e = num_edges // num_etypes + (
            0 if step != 0 else num_edges % num_etypes
71
        )
72
73
74
75
76
77
78
79
80
81
82
83
84
        if ntypes[src_ntype] == 0 or ntypes[dst_ntype] == 0:
            continue
        src = torch.randint(0, ntypes[src_ntype], (num_e,))
        dst = torch.randint(0, ntypes[dst_ntype], (num_e,))

        edges[etype] = (src, dst)

    gb_g = gb.from_dglgraph(dgl.heterograph(edges, ntypes))
    return (
        gb_g.csc_indptr,
        gb_g.indices,
        gb_g.node_type_offset,
        gb_g.type_per_edge,
85
86
        gb_g.node_type_to_id,
        gb_g.edge_type_to_id,
87
    )
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


def random_homo_graphbolt_graph(
    test_dir, dataset_name, num_nodes, num_edges, num_classes
):
    """Generate random graphbolt version homograph"""
    # Generate random edges.
    nodes = np.repeat(np.arange(num_nodes), 5)
    neighbors = np.random.randint(0, num_nodes, size=(num_edges))
    edges = np.stack([nodes, neighbors], axis=1)
    # Wrtie into edges/edge.csv
    os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
    edges = pd.DataFrame(edges, columns=["src", "dst"])
    edge_path = os.path.join("edges", "edge.csv")
    edges.to_csv(
        os.path.join(test_dir, edge_path),
        index=False,
        header=False,
    )

    # Generate random graph edge-feats.
109
    edge_feats = np.random.rand(num_edges, num_classes)
110
111
112
113
114
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    edge_feat_path = os.path.join("data", "edge-feat.npy")
    np.save(os.path.join(test_dir, edge_feat_path), edge_feats)

    # Generate random node-feats.
115
116
117
118
    if num_classes == 1:
        node_feats = np.random.rand(num_nodes)
    else:
        node_feats = np.random.rand(num_nodes, num_classes)
119
120
121
122
123
124
125
126
127
128
129
    node_feat_path = os.path.join("data", "node-feat.npy")
    np.save(os.path.join(test_dir, node_feat_path), node_feats)

    # Generate train/test/valid set.
    assert num_nodes % 4 == 0, "num_nodes must be divisible by 4"
    each_set_size = num_nodes // 4
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
    train_pairs = (
        np.arange(each_set_size),
        np.arange(each_set_size, 2 * each_set_size),
    )
130
    train_data = np.vstack(train_pairs).T.astype(np.int64)
131
132
133
134
135
136
137
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), train_data)

    validation_pairs = (
        np.arange(each_set_size, 2 * each_set_size),
        np.arange(2 * each_set_size, 3 * each_set_size),
    )
138
    validation_data = np.vstack(validation_pairs).T.astype(np.int64)
139
140
141
142
143
144
145
    validation_path = os.path.join("set", "validation.npy")
    np.save(os.path.join(test_dir, validation_path), validation_data)

    test_pairs = (
        np.arange(2 * each_set_size, 3 * each_set_size),
        np.arange(3 * each_set_size, 4 * each_set_size),
    )
146
    test_data = np.vstack(test_pairs).T.astype(np.int64)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    test_path = os.path.join("set", "test.npy")
    np.save(os.path.join(test_dir, test_path), test_data)

    yaml_content = f"""
        dataset_name: {dataset_name}
        graph: # graph structure and required attributes.
            nodes:
                - num: {num_nodes}
            edges:
                - format: csv
                  path: {edge_path}
            feature_data:
                - domain: edge
                  type: null
                  name: feat
                  format: numpy
                  in_memory: true
                  path: {edge_feat_path}
        feature_data:
            - domain: node
              type: null
              name: feat
              format: numpy
170
              in_memory: true
171
              path: {node_feat_path}
172
173
174
175
176
            - domain: edge
              type: null
              name: feat
              format: numpy
              path: {edge_feat_path}
177
        tasks:
178
          - name: link_prediction
179
180
            num_classes: {num_classes}
            train_set:
181
              - type: null
182
                data:
183
184
185
                  - name: node_pairs
                    format: numpy
                    in_memory: true
186
187
                    path: {train_path}
            validation_set:
188
              - type: null
189
                data:
190
191
192
                  - name: node_pairs
                    format: numpy
                    in_memory: true
193
194
                    path: {validation_path}
            test_set:
195
              - type: null
196
                data:
197
198
199
                  - name: node_pairs
                    format: numpy
                    in_memory: true
200
201
202
                    path: {test_path}
    """
    return yaml_content
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312


def genereate_raw_data_for_hetero_dataset(
    test_dir, dataset_name, num_nodes, num_edges, num_classes
):
    # Generate edges.
    edges_path = {}
    for etype, num_edge in num_edges.items():
        src_ntype, etype_str, dst_ntype = etype
        src = torch.randint(0, num_nodes[src_ntype], (num_edge,))
        dst = torch.randint(0, num_nodes[dst_ntype], (num_edge,))
        # Write into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
        edges = pd.DataFrame(
            np.stack([src, dst], axis=1), columns=["src", "dst"]
        )
        edge_path = os.path.join("edges", f"{etype_str}.csv")
        edges.to_csv(
            os.path.join(test_dir, edge_path),
            index=False,
            header=False,
        )
        edges_path[etype_str] = edge_path

    # Generate node features.
    node_feats_path = {}
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    for ntype, num_node in num_nodes.items():
        node_feat_path = os.path.join("data", f"{ntype}-feat.npy")
        node_feats = np.random.rand(num_node, num_classes)
        np.save(os.path.join(test_dir, node_feat_path), node_feats)
        node_feats_path[ntype] = node_feat_path

    # Generate train/test/valid set.
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
    user_ids = np.arange(num_nodes["user"])
    np.random.shuffle(user_ids)
    num_train = int(num_nodes["user"] * 0.6)
    num_validation = int(num_nodes["user"] * 0.2)
    num_test = num_nodes["user"] - num_train - num_validation
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), user_ids[:num_train])
    validation_path = os.path.join("set", "validation.npy")
    np.save(
        os.path.join(test_dir, validation_path),
        user_ids[num_train : num_train + num_validation],
    )
    test_path = os.path.join("set", "test.npy")
    np.save(
        os.path.join(test_dir, test_path),
        user_ids[num_train + num_validation :],
    )

    yaml_content = f"""
        dataset_name: {dataset_name}
        graph: # graph structure and required attributes.
          nodes:
            - type: user
              num: {num_nodes["user"]}
            - type: item
              num: {num_nodes["item"]}
          edges:
            - type: "user:follow:user"
              format: csv
              path: {edges_path["follow"]}
            - type: "user:click:item"
              format: csv
              path: {edges_path["click"]}
        feature_data:
          - domain: node
            type: user
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["user"]}
          - domain: node
            type: item
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["item"]}
        tasks:
          - name: node_classification
            num_classes: {num_classes}
            train_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {train_path}
            validation_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {validation_path}
            test_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {test_path}
    """

    yaml_file = os.path.join(test_dir, "metadata.yaml")
    with open(yaml_file, "w") as f:
        f.write(yaml_content)