gb_test_utils.py 10.8 KB
Newer Older
1
2
import os

3
import dgl
4
import dgl.graphbolt as gb
5

6
7
import numpy as np
import pandas as pd
8
9
10
11
import scipy.sparse as sp
import torch


12
def rand_csc_graph(N, density, bidirection_edge=False):
13
    adj = sp.random(N, N, density)
14
15
    if bidirection_edge:
        adj = adj + adj.T
16
17
18
19
20
    adj = adj.tocsc()

    indptr = torch.LongTensor(adj.indptr)
    indices = torch.LongTensor(adj.indices)

21
    graph = gb.fused_csc_sampling_graph(indptr, indices)
22
23

    return graph
24
25
26
27
28
29
30
31
32
33
34


def random_homo_graph(num_nodes, num_edges):
    csc_indptr = torch.randint(0, num_edges, (num_nodes + 1,))
    csc_indptr = torch.sort(csc_indptr)[0]
    csc_indptr[0] = 0
    csc_indptr[-1] = num_edges
    indices = torch.randint(0, num_nodes, (num_edges,))
    return csc_indptr, indices


35
def get_type_to_id(num_ntypes, num_etypes):
36
37
38
39
40
41
42
    ntypes = {f"n{i}": i for i in range(num_ntypes)}
    etypes = {}
    count = 0
    for n1 in range(num_ntypes):
        for n2 in range(n1, num_ntypes):
            if count >= num_etypes:
                break
43
            etypes.update({f"n{n1}:e{count}:n{n2}": count})
44
            count += 1
45
    return ntypes, etypes
46
47


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes):
    ntypes = {f"n{i}": num_nodes // num_ntypes for i in range(num_ntypes)}
    if num_nodes % num_ntypes != 0:
        ntypes["n0"] += num_nodes % num_ntypes
    etypes = []
    count = 0
    while count < num_etypes:
        for n1 in range(num_ntypes):
            for n2 in range(num_ntypes):
                if count >= num_etypes:
                    break
                etypes.append((f"n{n1}", f"e{count}", f"n{n2}"))
                count += 1
    return ntypes, etypes


64
def random_hetero_graph(num_nodes, num_edges, num_ntypes, num_etypes):
65
66
67
68
69
70
    ntypes, etypes = get_ntypes_and_etypes(num_nodes, num_ntypes, num_etypes)
    edges = {}
    for step, etype in enumerate(etypes):
        src_ntype, _, dst_ntype = etype
        num_e = num_edges // num_etypes + (
            0 if step != 0 else num_edges % num_etypes
71
        )
72
73
74
75
76
77
78
79
80
81
82
83
84
        if ntypes[src_ntype] == 0 or ntypes[dst_ntype] == 0:
            continue
        src = torch.randint(0, ntypes[src_ntype], (num_e,))
        dst = torch.randint(0, ntypes[dst_ntype], (num_e,))

        edges[etype] = (src, dst)

    gb_g = gb.from_dglgraph(dgl.heterograph(edges, ntypes))
    return (
        gb_g.csc_indptr,
        gb_g.indices,
        gb_g.node_type_offset,
        gb_g.type_per_edge,
85
86
        gb_g.node_type_to_id,
        gb_g.edge_type_to_id,
87
    )
88
89
90


def random_homo_graphbolt_graph(
91
    test_dir, dataset_name, num_nodes, num_edges, num_classes, edge_fmt="csv"
92
93
94
95
96
97
98
):
    """Generate random graphbolt version homograph"""
    # Generate random edges.
    nodes = np.repeat(np.arange(num_nodes), 5)
    neighbors = np.random.randint(0, num_nodes, size=(num_edges))
    edges = np.stack([nodes, neighbors], axis=1)
    os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
99
100
    assert edge_fmt in ["numpy", "csv"], print(
        "only numpy and csv are supported for edges."
101
    )
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    if edge_fmt == "csv":
        # Wrtie into edges/edge.csv
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edge_path = os.path.join("edges", "edge.csv")
        edges.to_csv(
            os.path.join(test_dir, edge_path),
            index=False,
            header=False,
        )
    else:
        # Wrtie into edges/edge.npy
        edges = edges.T
        edge_path = os.path.join("edges", "edge.npy")
        np.save(os.path.join(test_dir, edge_path), edges)
116
117

    # Generate random graph edge-feats.
118
    edge_feats = np.random.rand(num_edges, num_classes)
119
120
121
122
123
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    edge_feat_path = os.path.join("data", "edge-feat.npy")
    np.save(os.path.join(test_dir, edge_feat_path), edge_feats)

    # Generate random node-feats.
124
125
126
127
    if num_classes == 1:
        node_feats = np.random.rand(num_nodes)
    else:
        node_feats = np.random.rand(num_nodes, num_classes)
128
129
130
131
132
133
134
135
136
137
138
    node_feat_path = os.path.join("data", "node-feat.npy")
    np.save(os.path.join(test_dir, node_feat_path), node_feats)

    # Generate train/test/valid set.
    assert num_nodes % 4 == 0, "num_nodes must be divisible by 4"
    each_set_size = num_nodes // 4
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
    train_pairs = (
        np.arange(each_set_size),
        np.arange(each_set_size, 2 * each_set_size),
    )
139
    train_data = np.vstack(train_pairs).T.astype(np.int64)
140
141
142
143
144
145
146
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), train_data)

    validation_pairs = (
        np.arange(each_set_size, 2 * each_set_size),
        np.arange(2 * each_set_size, 3 * each_set_size),
    )
147
    validation_data = np.vstack(validation_pairs).T.astype(np.int64)
148
149
150
151
152
153
154
    validation_path = os.path.join("set", "validation.npy")
    np.save(os.path.join(test_dir, validation_path), validation_data)

    test_pairs = (
        np.arange(2 * each_set_size, 3 * each_set_size),
        np.arange(3 * each_set_size, 4 * each_set_size),
    )
155
    test_data = np.vstack(test_pairs).T.astype(np.int64)
156
157
158
159
160
161
162
163
164
    test_path = os.path.join("set", "test.npy")
    np.save(os.path.join(test_dir, test_path), test_data)

    yaml_content = f"""
        dataset_name: {dataset_name}
        graph: # graph structure and required attributes.
            nodes:
                - num: {num_nodes}
            edges:
165
                - format: {edge_fmt}
166
167
168
169
170
171
172
173
174
175
176
177
178
                  path: {edge_path}
            feature_data:
                - domain: edge
                  type: null
                  name: feat
                  format: numpy
                  in_memory: true
                  path: {edge_feat_path}
        feature_data:
            - domain: node
              type: null
              name: feat
              format: numpy
179
              in_memory: true
180
              path: {node_feat_path}
181
182
183
184
185
            - domain: edge
              type: null
              name: feat
              format: numpy
              path: {edge_feat_path}
186
        tasks:
187
          - name: link_prediction
188
189
            num_classes: {num_classes}
            train_set:
190
              - type: null
191
                data:
192
193
194
                  - name: node_pairs
                    format: numpy
                    in_memory: true
195
196
                    path: {train_path}
            validation_set:
197
              - type: null
198
                data:
199
200
201
                  - name: node_pairs
                    format: numpy
                    in_memory: true
202
203
                    path: {validation_path}
            test_set:
204
              - type: null
205
                data:
206
207
208
                  - name: node_pairs
                    format: numpy
                    in_memory: true
209
210
211
                    path: {test_path}
    """
    return yaml_content
212
213
214


def genereate_raw_data_for_hetero_dataset(
215
    test_dir, dataset_name, num_nodes, num_edges, num_classes, edge_fmt="csv"
216
217
218
219
220
221
222
223
):
    # Generate edges.
    edges_path = {}
    for etype, num_edge in num_edges.items():
        src_ntype, etype_str, dst_ntype = etype
        src = torch.randint(0, num_nodes[src_ntype], (num_edge,))
        dst = torch.randint(0, num_nodes[dst_ntype], (num_edge,))
        os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
224
225
        assert edge_fmt in ["numpy", "csv"], print(
            "only numpy and csv are supported for edges."
226
        )
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        if edge_fmt == "csv":
            # Write into edges/edge.csv
            edges = pd.DataFrame(
                np.stack([src, dst], axis=1), columns=["src", "dst"]
            )
            edge_path = os.path.join("edges", f"{etype_str}.csv")
            edges.to_csv(
                os.path.join(test_dir, edge_path),
                index=False,
                header=False,
            )
        else:
            edges = np.stack([src, dst], axis=1).T
            edge_path = os.path.join("edges", f"{etype_str}.npy")
            np.save(os.path.join(test_dir, edge_path), edges)
242
243
244
245
246
247
248
249
250
251
252
253
254
        edges_path[etype_str] = edge_path

    # Generate node features.
    node_feats_path = {}
    os.makedirs(os.path.join(test_dir, "data"), exist_ok=True)
    for ntype, num_node in num_nodes.items():
        node_feat_path = os.path.join("data", f"{ntype}-feat.npy")
        node_feats = np.random.rand(num_node, num_classes)
        np.save(os.path.join(test_dir, node_feat_path), node_feats)
        node_feats_path[ntype] = node_feat_path

    # Generate train/test/valid set.
    os.makedirs(os.path.join(test_dir, "set"), exist_ok=True)
255
    user_ids = torch.arange(num_nodes["user"])
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    np.random.shuffle(user_ids)
    num_train = int(num_nodes["user"] * 0.6)
    num_validation = int(num_nodes["user"] * 0.2)
    num_test = num_nodes["user"] - num_train - num_validation
    train_path = os.path.join("set", "train.npy")
    np.save(os.path.join(test_dir, train_path), user_ids[:num_train])
    validation_path = os.path.join("set", "validation.npy")
    np.save(
        os.path.join(test_dir, validation_path),
        user_ids[num_train : num_train + num_validation],
    )
    test_path = os.path.join("set", "test.npy")
    np.save(
        os.path.join(test_dir, test_path),
        user_ids[num_train + num_validation :],
    )

    yaml_content = f"""
        dataset_name: {dataset_name}
        graph: # graph structure and required attributes.
          nodes:
            - type: user
              num: {num_nodes["user"]}
            - type: item
              num: {num_nodes["item"]}
          edges:
            - type: "user:follow:user"
283
              format: {edge_fmt}
284
285
              path: {edges_path["follow"]}
            - type: "user:click:item"
286
              format: {edge_fmt}
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
              path: {edges_path["click"]}
        feature_data:
          - domain: node
            type: user
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["user"]}
          - domain: node
            type: item
            name: feat
            format: numpy
            in_memory: true
            path: {node_feats_path["item"]}
        tasks:
          - name: node_classification
            num_classes: {num_classes}
            train_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {train_path}
            validation_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {validation_path}
            test_set:
              - type: user
                data:
                  - name: seed_nodes
                    format: numpy
                    in_memory: true
                    path: {test_path}
    """

    yaml_file = os.path.join(test_dir, "metadata.yaml")
    with open(yaml_file, "w") as f:
        f.write(yaml_content)