test_nn.py 16.3 KB
Newer Older
1
2
3
import tensorflow as tf
from tensorflow.keras import layers
import networkx as nx
4
import pytest
5
6
7
8
import dgl
import dgl.nn.tensorflow as nn
import dgl.function as fn
import backend as F
9
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
from test_utils import parametrize_dtype
11
12
13
14
15
16
17
18
19
20
21
from copy import deepcopy

import numpy as np
import scipy as sp

def _AXWb(A, X, W, b):
    X = tf.matmul(X, W)
    Y = tf.reshape(tf.matmul(A, tf.reshape(X, (X.shape[0], -1))), X.shape)
    return Y + b

def test_graph_conv():
22
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
23
24
25
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    # test rest_parameters
    # old_weight = deepcopy(conv.weight.data)
    # conv.reset_parameters()
    # new_weight = conv.weight.data
    # assert not F.allclose(old_weight, new_weight)

74
75
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree', 'dglgraph']))
76
77
78
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
79
80
def test_graph_conv2(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
81
82
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
83
84
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
85
    h = F.randn((nsrc, 5))
86
    h_dst = F.randn((ndst, 2))
87
    if weight:
88
        h_out = conv(g, h)
89
    else:
90
91
92
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2_bi(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5))
    h_dst = F.randn((ndst, 2))
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
    assert h_out.shape == (ndst, 2)
111
112
113

def test_simple_pool():
    ctx = F.ctx()
114
    g = dgl.DGLGraph(nx.path_graph(15)).to(F.ctx())
115
116
117
118
119
120
121
122
123
124

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sum_pool(g, h0)
125
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
126
    h1 = avg_pool(g, h0)
127
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
128
    h1 = max_pool(g, h0)
129
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
130
    h1 = sort_pool(g, h0)
131
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
132
133

    # test#2: batched graph
134
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    bg = dgl.batch([g, g_, g, g_, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = sum_pool(bg, h0)
    truth = tf.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = avg_pool(bg, h0)
    truth = tf.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = max_pool(bg, h0)
    truth = tf.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = sort_pool(bg, h0)
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

def test_glob_att_pool():
165
    g = dgl.DGLGraph(nx.path_graph(10)).to(F.ctx())
166
167
168
169
170
171
172

    gap = nn.GlobalAttentionPooling(layers.Dense(1), layers.Dense(10))
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
173
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
174
175
176
177
178
179
180
181
182
183

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2


def test_rgcn():
    etype = []
184
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
185
186
187
188
189
190
191
192
193
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
194
195
196
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
197
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
198
199
200
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
201
    h_new_low = rgc_basis_low(g, h, r)
202
    assert list(h_new.shape) == [100, O]
203
204
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
205
206

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
207
208
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
209
    rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
210
211
212
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r)
213
    h_new_low = rgc_bdd_low(g, h, r)
214
    assert list(h_new.shape) == [100, O]
215
216
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
217
218
219
220
221

    # with norm
    norm = tf.zeros((g.number_of_edges(), 1))

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
222
223
224
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
225
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
226
227
228
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r, norm)
229
    h_new_low = rgc_basis_low(g, h, r, norm)
230
    assert list(h_new.shape) == [100, O]
231
232
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
233
234

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
235
236
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
237
    rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
238
239
240
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r, norm)
241
    h_new_low = rgc_bdd_low(g, h, r, norm)
242
    assert list(h_new.shape) == [100, O]
243
244
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
245
246
247

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
248
249
250
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
251
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
252
253
    h = tf.constant(np.random.randint(0, I, (100,))) * 1
    r = tf.constant(etype) * 1
254
    h_new = rgc_basis(g, h, r)
255
    h_new_low = rgc_basis_low(g, h, r)
256
    assert list(h_new.shape) == [100, O]
257
258
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
259

260
@parametrize_dtype
261
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
262
263
264
def test_gat_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
265
    gat = nn.GATConv(5, 2, 4)
266
    feat = F.randn((g.number_of_nodes(), 5))
267
    h = gat(g, feat)
268
    assert h.shape == (g.number_of_nodes(), 4, 2)
269

270
@parametrize_dtype
271
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
272
273
274
def test_gat_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
275
276
    gat = nn.GATConv(5, 2, 4)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
277
    h = gat(g, feat)
278
    assert h.shape == (g.number_of_dst_nodes(), 4, 2)
279

280
281
282
283
284
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
285
    sage = nn.SAGEConv(5, 10, aggre_type)
286
    feat = F.randn((g.number_of_nodes(), 5))
287
288
289
    h = sage(g, feat)
    assert h.shape[-1] == 10

290
291
292
293
294
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
295
296
297
    sage = nn.SAGEConv(5, 10, aggre_type)
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
298
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
299
300
    h = sage(g, feat)
    assert h.shape[-1] == 2
301
    assert h.shape[0] == g.number_of_dst_nodes()
302

303
304
305
@parametrize_dtype
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi_empty(idtype, aggre_type):
Mufei Li's avatar
Mufei Li committed
306
    # Test the case for graphs without edges
307
308
    g = dgl.bipartite([], num_nodes=(5, 3)).to(F.ctx())
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
309
310
311
312
313
314
315
316
317
318
319
320
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

321
322
323
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_sgc_conv(g, idtype):
324
    ctx = F.ctx()
325
    g = g.astype(idtype).to(ctx)
326
327
    # not cached
    sgc = nn.SGConv(5, 10, 3)
328
    feat = F.randn((g.number_of_nodes(), 5))
329
330
331
332
333
334
335
336
337
338
339

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

340
341
342
343
344
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
345
    appnp = nn.APPNPConv(10, 0.1)
346
    feat = F.randn((g.number_of_nodes(), 5))
347
348
349
350

    h = appnp(g, feat)
    assert h.shape[-1] == 5

351
352
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
353
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
354
355
356
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
357
358
359
360
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
361
    feat = F.randn((g.number_of_nodes(), 5))
362
    h = gin(g, feat)
363
    assert h.shape == (g.number_of_nodes(), 12)
364

365
366
367
368
369
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
370
371
372
373
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
374
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
375
    h = gin(g, feat)
376
    assert h.shape == (g.number_of_dst_nodes(), 12)
377

378
379
380
381
382
383
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

384
@parametrize_dtype
385
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
386
def test_hetero_conv(agg, idtype):
387
388
389
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
390
391
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]},
        idtype=idtype, device=F.ctx())
392
    conv = nn.HeteroGraphConv({
393
394
395
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        agg)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(tf.keras.layers.Layer):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def call(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return tf.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
if __name__ == '__main__':
    test_graph_conv()
    # test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    # test_set_trans()
    test_rgcn()
    # test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    # test_agnn_conv()
    # test_gated_graph_conv()
    # test_nn_conv()
    # test_gmm_conv()
    # test_dense_graph_conv()
    # test_dense_sage_conv()
    # test_dense_cheb_conv()
    # test_sequential()