test_nn.py 16 KB
Newer Older
1
2
3
import tensorflow as tf
from tensorflow.keras import layers
import networkx as nx
4
import pytest
5
6
7
8
import dgl
import dgl.nn.tensorflow as nn
import dgl.function as fn
import backend as F
9
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
from test_utils import parametrize_dtype
11
12
13
14
15
16
17
18
19
20
21
from copy import deepcopy

import numpy as np
import scipy as sp

def _AXWb(A, X, W, b):
    X = tf.matmul(X, W)
    Y = tf.reshape(tf.matmul(A, tf.reshape(X, (X.shape[0], -1))), X.shape)
    return Y + b

def test_graph_conv():
22
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
23
24
25
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    # test rest_parameters
    # old_weight = deepcopy(conv.weight.data)
    # conv.reset_parameters()
    # new_weight = conv.weight.data
    # assert not F.allclose(old_weight, new_weight)

74
75
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree', 'dglgraph']))
76
77
78
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
79
80
def test_graph_conv2(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
81
82
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
83
84
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
85
    h = F.randn((nsrc, 5))
86
    h_dst = F.randn((ndst, 2))
87
    if weight:
88
        h_out = conv(g, h)
89
    else:
90
91
92
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2_bi(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5))
    h_dst = F.randn((ndst, 2))
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
    assert h_out.shape == (ndst, 2)
111
112
113

def test_simple_pool():
    ctx = F.ctx()
114
    g = dgl.DGLGraph(nx.path_graph(15)).to(F.ctx())
115
116
117
118
119
120
121
122
123
124

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sum_pool(g, h0)
125
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
126
    h1 = avg_pool(g, h0)
127
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
128
    h1 = max_pool(g, h0)
129
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
130
    h1 = sort_pool(g, h0)
131
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
132
133

    # test#2: batched graph
134
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    bg = dgl.batch([g, g_, g, g_, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = sum_pool(bg, h0)
    truth = tf.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = avg_pool(bg, h0)
    truth = tf.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = max_pool(bg, h0)
    truth = tf.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = sort_pool(bg, h0)
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

def test_glob_att_pool():
165
    g = dgl.DGLGraph(nx.path_graph(10)).to(F.ctx())
166
167
168
169
170
171
172

    gap = nn.GlobalAttentionPooling(layers.Dense(1), layers.Dense(10))
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
173
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
174
175
176
177
178
179
180
181
182
183

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2


def test_rgcn():
    etype = []
184
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
185
186
187
188
189
190
191
192
193
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
194
195
196
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
197
198
199
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
200
    h_new_low = rgc_basis_low(g, h, r)
201
    assert list(h_new.shape) == [100, O]
202
203
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
204
205

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
206
207
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
208
209
210
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r)
211
    h_new_low = rgc_bdd_low(g, h, r)
212
    assert list(h_new.shape) == [100, O]
213
214
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
215
216
217
218
219

    # with norm
    norm = tf.zeros((g.number_of_edges(), 1))

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
220
221
222
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
223
224
225
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r, norm)
226
    h_new_low = rgc_basis_low(g, h, r, norm)
227
    assert list(h_new.shape) == [100, O]
228
229
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
230
231

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
232
233
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
234
235
236
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r, norm)
237
    h_new_low = rgc_bdd_low(g, h, r, norm)
238
    assert list(h_new.shape) == [100, O]
239
240
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
241
242
243

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
244
245
246
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
247
248
    h = tf.constant(np.random.randint(0, I, (100,))) * 1
    r = tf.constant(etype) * 1
249
    h_new = rgc_basis(g, h, r)
250
    h_new_low = rgc_basis_low(g, h, r)
251
    assert list(h_new.shape) == [100, O]
252
253
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
254

255
256
257
258
259
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gat_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
260
    gat = nn.GATConv(5, 2, 4)
261
    feat = F.randn((g.number_of_nodes(), 5))
262
    h = gat(g, feat)
263
    assert h.shape == (g.number_of_nodes(), 4, 2)
264

265
266
267
268
269
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_gat_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
270
271
    gat = nn.GATConv(5, 2, 4)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
272
    h = gat(g, feat)
273
    assert h.shape == (g.number_of_dst_nodes(), 4, 2)
274

275
276
277
278
279
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
280
    sage = nn.SAGEConv(5, 10, aggre_type)
281
    feat = F.randn((g.number_of_nodes(), 5))
282
283
284
    h = sage(g, feat)
    assert h.shape[-1] == 10

285
286
287
288
289
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
290
291
292
    sage = nn.SAGEConv(5, 10, aggre_type)
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
293
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
294
295
    h = sage(g, feat)
    assert h.shape[-1] == 2
296
    assert h.shape[0] == g.number_of_dst_nodes()
297

298
299
300
@parametrize_dtype
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi_empty(idtype, aggre_type):
Mufei Li's avatar
Mufei Li committed
301
    # Test the case for graphs without edges
302
303
    g = dgl.bipartite([], num_nodes=(5, 3)).to(F.ctx())
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
304
305
306
307
308
309
310
311
312
313
314
315
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

316
317
318
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_sgc_conv(g, idtype):
319
    ctx = F.ctx()
320
    g = g.astype(idtype).to(ctx)
321
322
    # not cached
    sgc = nn.SGConv(5, 10, 3)
323
    feat = F.randn((g.number_of_nodes(), 5))
324
325
326
327
328
329
330
331
332
333
334

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

335
336
337
338
339
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
340
    appnp = nn.APPNPConv(10, 0.1)
341
    feat = F.randn((g.number_of_nodes(), 5))
342
343
344
345

    h = appnp(g, feat)
    assert h.shape[-1] == 5

346
347
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
348
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
349
350
351
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
352
353
354
355
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
356
    feat = F.randn((g.number_of_nodes(), 5))
357
    h = gin(g, feat)
358
    assert h.shape == (g.number_of_nodes(), 12)
359

360
361
362
363
364
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
365
366
367
368
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
369
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
370
    h = gin(g, feat)
371
    assert h.shape == (g.number_of_dst_nodes(), 12)
372

373
374
375
376
377
378
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

379
@parametrize_dtype
380
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
381
def test_hetero_conv(agg, idtype):
382
383
384
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
385
386
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]},
        idtype=idtype, device=F.ctx())
387
    conv = nn.HeteroGraphConv({
388
389
390
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        agg)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(tf.keras.layers.Layer):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def call(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return tf.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
if __name__ == '__main__':
    test_graph_conv()
    # test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    # test_set_trans()
    test_rgcn()
    # test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    # test_agnn_conv()
    # test_gated_graph_conv()
    # test_nn_conv()
    # test_gmm_conv()
    # test_dense_graph_conv()
    # test_dense_sage_conv()
    # test_dense_cheb_conv()
    # test_sequential()