"tutorials/vscode:/vscode.git/clone" did not exist on "168794cdbcc3858f26fea48437a4dee6f8fe5ee5"
test_nn.py 17.2 KB
Newer Older
1
2
3
import tensorflow as tf
from tensorflow.keras import layers
import networkx as nx
4
import pytest
5
6
7
8
import dgl
import dgl.nn.tensorflow as nn
import dgl.function as fn
import backend as F
9
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from copy import deepcopy

import numpy as np
import scipy as sp

def _AXWb(A, X, W, b):
    X = tf.matmul(X, W)
    Y = tf.reshape(tf.matmul(A, tf.reshape(X, (X.shape[0], -1))), X.shape)
    return Y + b

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

25
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    # test rest_parameters
    # old_weight = deepcopy(conv.weight.data)
    # conv.reset_parameters()
    # new_weight = conv.weight.data
    # assert not F.allclose(old_weight, new_weight)

73
74
75
76
77
78
79
80
81
82
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small'], exclude=['zero-degree']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5))
83
    h_dst = F.randn((ndst, 2))
84
    if weight:
85
        h_out = conv(g, h)
86
    else:
87
88
89
90
91
92
93
94
95
96
97
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), weight=ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
98
99
100
101
102
103
104
105
106
107
108
109
110
111

def test_simple_pool():
    ctx = F.ctx()
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sum_pool(g, h0)
112
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
113
    h1 = avg_pool(g, h0)
114
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
115
    h1 = max_pool(g, h0)
116
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
117
    h1 = sort_pool(g, h0)
118
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = sum_pool(bg, h0)
    truth = tf.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = avg_pool(bg, h0)
    truth = tf.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = max_pool(bg, h0)
    truth = tf.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = sort_pool(bg, h0)
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

def uniform_attention(g, shape):
    a = F.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / tf.cast(tf.reshape(g.in_degrees(g.edges()[1]), target_shape), tf.float32)

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with Tensorflow built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)
    
    score = F.randn((900, 1))
    with tf.GradientTape() as tape:
        tape.watch(score)
        grad = F.randn((900, 1))
        y = tf.reshape(F.softmax(tf.reshape(score,(30, 30)), dim=0), (-1, 1))
        grads = tape.gradient(y, [score])
        grad_score = grads[0]

    with tf.GradientTape() as tape:
        tape.watch(score)
        y_dgl = nn.edge_softmax(g, score)
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
        # check forward
        assert F.allclose(y_dgl, y)
        grads = tape.gradient(y_dgl, [score])
    # checkout gradient
    assert F.allclose(grads[0], grad_score)
    print(grads[0][:10], grad_score[:10])
    
    # Test 2
    def generate_rand_graph(n):
      arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
      return dgl.DGLGraph(arr, readonly=True)
    
    g = generate_rand_graph(50)
    a1 = F.randn((g.number_of_edges(), 1))
    a2 = tf.identity(a1)
    with tf.GradientTape() as tape:
        tape.watch(a1)
        g.edata['s'] = a1
        g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
        loss = tf.reduce_sum(g.edata['ss'])
        a1_grad = tape.gradient(loss, [a1])[0]
    
    with tf.GradientTape() as tape:
        tape.watch(a2)
        builtin_sm = nn.edge_softmax(g, a2)
        loss = tf.reduce_sum(builtin_sm)
        a2_grad = tape.gradient(loss, [a2])[0]
    print(a1_grad - a2_grad)
    assert len(g.ndata) == 0
    assert len(g.edata) == 2
    assert F.allclose(a1_grad, a2_grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend

def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_1 = nn.edge_softmax(g, score, eids)
        grads = tape.gradient(y_1, [score])
    grad_1 = grads[0]
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_2 = nn.edge_softmax(subg, score)
        grads = tape.gradient(y_2, [score])
    grad_2 = grads[0]

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))

    gap = nn.GlobalAttentionPooling(layers.Dense(1), layers.Dense(10))
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
264
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2


def test_rgcn():
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
285
286
287
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
288
289
290
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
291
    h_new_low = rgc_basis_low(g, h, r)
292
    assert list(h_new.shape) == [100, O]
293
294
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
295
296

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
297
298
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
299
300
301
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r)
302
    h_new_low = rgc_bdd_low(g, h, r)
303
    assert list(h_new.shape) == [100, O]
304
305
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
306
307
308
309
310

    # with norm
    norm = tf.zeros((g.number_of_edges(), 1))

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
311
312
313
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
314
315
316
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r, norm)
317
    h_new_low = rgc_basis_low(g, h, r, norm)
318
    assert list(h_new.shape) == [100, O]
319
320
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
321
322

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
323
324
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
325
326
327
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r, norm)
328
    h_new_low = rgc_bdd_low(g, h, r, norm)
329
    assert list(h_new.shape) == [100, O]
330
331
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
332
333
334

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
335
336
337
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
338
339
340
    h = tf.constant(np.random.randint(0, I, (100,)))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
341
    h_new_low = rgc_basis_low(g, h, r)
342
    assert list(h_new.shape) == [100, O]
343
344
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
345
346
347
348
349
350

def test_gat_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gat = nn.GATConv(5, 2, 4)
    feat = F.randn((100, 5))
    h = gat(g, feat)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    assert h.shape == (100, 4, 2)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    h = gat(g, feat)

@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))

    h = appnp(g, feat)
    assert h.shape[-1] == 5

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv(aggregator_type):
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = F.randn((100, 5))
    gin = gin
    h = gin(g, feat)
    assert h.shape == (100, 12)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin(g, feat)
    assert h.shape == (200, 12)
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(tf.keras.layers.Layer):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def call(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return tf.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()
    test_partial_edge_softmax()
    # test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    # test_set_trans()
    test_rgcn()
    # test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    # test_agnn_conv()
    # test_gated_graph_conv()
    # test_nn_conv()
    # test_gmm_conv()
    # test_dense_graph_conv()
    # test_dense_sage_conv()
    # test_dense_cheb_conv()
    # test_sequential()