"vscode:/vscode.git/clone" did not exist on "14b950705a0ddc88d5b39fa65ba4698f139a0801"
fused_csc_sampling_graph.cc 52.5 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/fused_csc_sampling_graph.h>
8
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
#include "./shared_memory_helper.h"
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
namespace {
torch::optional<torch::Dict<std::string, torch::Tensor>> TensorizeDict(
    const torch::optional<torch::Dict<std::string, int64_t>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, torch::Tensor> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), torch::tensor(pair.value(), torch::kInt64));
  }
  return result;
}

torch::optional<torch::Dict<std::string, int64_t>> DetensorizeDict(
    const torch::optional<torch::Dict<std::string, torch::Tensor>>& dict) {
  if (!dict.has_value()) {
    return torch::nullopt;
  }
  torch::Dict<std::string, int64_t> result;
  for (const auto& pair : dict.value()) {
    result.insert(pair.key(), pair.value().item<int64_t>());
  }
  return result;
}
}  // namespace

48
49
50
namespace graphbolt {
namespace sampling {

51
52
static const int kPickleVersion = 6199;

53
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
54
    const torch::Tensor& indptr, const torch::Tensor& indices,
55
    const torch::optional<torch::Tensor>& node_type_offset,
56
    const torch::optional<torch::Tensor>& type_per_edge,
57
58
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
59
    const torch::optional<NodeAttrMap>& node_attributes,
60
    const torch::optional<EdgeAttrMap>& edge_attributes)
61
    : indptr_(indptr),
62
      indices_(indices),
63
      node_type_offset_(node_type_offset),
64
      type_per_edge_(type_per_edge),
65
66
      node_type_to_id_(node_type_to_id),
      edge_type_to_id_(edge_type_to_id),
67
      node_attributes_(node_attributes),
68
      edge_attributes_(edge_attributes) {
69
70
71
72
73
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

74
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::Create(
75
    const torch::Tensor& indptr, const torch::Tensor& indices,
76
    const torch::optional<torch::Tensor>& node_type_offset,
77
    const torch::optional<torch::Tensor>& type_per_edge,
78
79
    const torch::optional<NodeTypeToIDMap>& node_type_to_id,
    const torch::optional<EdgeTypeToIDMap>& edge_type_to_id,
80
    const torch::optional<NodeAttrMap>& node_attributes,
81
    const torch::optional<EdgeAttrMap>& edge_attributes) {
82
83
84
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
85
86
87
88
    TORCH_CHECK(node_type_to_id.has_value());
    TORCH_CHECK(
        offset.size(0) ==
        static_cast<int64_t>(node_type_to_id.value().size() + 1));
89
90
91
92
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
93
    TORCH_CHECK(edge_type_to_id.has_value());
94
  }
95
96
97
98
99
  if (node_attributes.has_value()) {
    for (const auto& pair : node_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indptr.size(0) - 1);
    }
  }
100
101
102
103
104
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
105
  return c10::make_intrusive<FusedCSCSamplingGraph>(
106
      indptr, indices, node_type_offset, type_per_edge, node_type_to_id,
107
      edge_type_to_id, node_attributes, edge_attributes);
108
109
}

110
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
111
  const int64_t magic_num =
112
      read_from_archive<int64_t>(archive, "FusedCSCSamplingGraph/magic_num");
113
114
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
115
116
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
117
118
119
120
121
122
123
      read_from_archive<torch::Tensor>(archive, "FusedCSCSamplingGraph/indptr");
  indices_ = read_from_archive<torch::Tensor>(
      archive, "FusedCSCSamplingGraph/indices");
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_offset")) {
    node_type_offset_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/node_type_offset");
124
  }
125
126
127
128
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_type_per_edge")) {
    type_per_edge_ = read_from_archive<torch::Tensor>(
        archive, "FusedCSCSamplingGraph/type_per_edge");
129
  }
130

131
132
133
134
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_type_to_id")) {
    node_type_to_id_ = read_from_archive<NodeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/node_type_to_id");
135
136
  }

137
138
139
140
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_type_to_id")) {
    edge_type_to_id_ = read_from_archive<EdgeTypeToIDMap>(
        archive, "FusedCSCSamplingGraph/edge_type_to_id");
141
142
  }

143
144
145
146
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_node_attributes")) {
    node_attributes_ = read_from_archive<NodeAttrMap>(
        archive, "FusedCSCSamplingGraph/node_attributes");
147
  }
148
149
150
151
  if (read_from_archive<bool>(
          archive, "FusedCSCSamplingGraph/has_edge_attributes")) {
    edge_attributes_ = read_from_archive<EdgeAttrMap>(
        archive, "FusedCSCSamplingGraph/edge_attributes");
152
  }
153
154
}

155
156
157
158
159
160
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
161
  archive.write(
162
163
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
164
165
  if (node_type_offset_) {
    archive.write(
166
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
167
168
  }
  archive.write(
169
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
170
  if (type_per_edge_) {
171
172
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
173
  }
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  archive.write(
      "FusedCSCSamplingGraph/has_node_type_to_id",
      node_type_to_id_.has_value());
  if (node_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/node_type_to_id", node_type_to_id_.value());
  }
  archive.write(
      "FusedCSCSamplingGraph/has_edge_type_to_id",
      edge_type_to_id_.has_value());
  if (edge_type_to_id_) {
    archive.write(
        "FusedCSCSamplingGraph/edge_type_to_id", edge_type_to_id_.value());
  }
188
189
190
191
192
193
194
  archive.write(
      "FusedCSCSamplingGraph/has_node_attributes",
      node_attributes_.has_value());
  if (node_attributes_) {
    archive.write(
        "FusedCSCSamplingGraph/node_attributes", node_attributes_.value());
  }
195
  archive.write(
196
197
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
198
  if (edge_attributes_) {
199
200
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
201
  }
202
203
}

204
void FusedCSCSamplingGraph::SetState(
205
206
207
208
209
210
211
212
213
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
214
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
215
216
217
218
219
220
221
222
223
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
224
225
226
227
228
229
  if (state.find("node_type_to_id") != state.end()) {
    node_type_to_id_ = DetensorizeDict(state.at("node_type_to_id"));
  }
  if (state.find("edge_type_to_id") != state.end()) {
    edge_type_to_id_ = DetensorizeDict(state.at("edge_type_to_id"));
  }
230
231
232
  if (state.find("node_attributes") != state.end()) {
    node_attributes_ = state.at("node_attributes");
  }
233
234
235
236
237
238
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
239
FusedCSCSamplingGraph::GetState() const {
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
257
258
259
260
261
262
  if (node_type_to_id_.has_value()) {
    state.insert("node_type_to_id", TensorizeDict(node_type_to_id_).value());
  }
  if (edge_type_to_id_.has_value()) {
    state.insert("edge_type_to_id", TensorizeDict(edge_type_to_id_).value());
  }
263
264
265
  if (node_attributes_.has_value()) {
    state.insert("node_attributes", node_attributes_.value());
  }
266
267
268
269
270
271
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

272
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
273
274
275
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
276
277
  const auto num_seeds = nodes.size(0);
  torch::Tensor indptr = torch::zeros({num_seeds + 1}, indptr_.dtype());
278
  std::vector<torch::Tensor> indices_arr(num_seeds);
279
280
  torch::Tensor original_column_node_ids =
      torch::zeros({num_seeds}, indptr_.dtype());
281
282
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "InSubgraph", ([&] {
        torch::parallel_for(
            0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
              for (size_t i = start; i < end; ++i) {
                const auto node_id = nodes[i].item<scalar_t>();
                const auto start_idx = indptr_[node_id].item<scalar_t>();
                const auto end_idx = indptr_[node_id + 1].item<scalar_t>();
                indptr[i + 1] = end_idx - start_idx;
                original_column_node_ids[i] = node_id;
                indices_arr[i] = indices_.slice(0, start_idx, end_idx);
                edge_ids_arr[i] = torch::arange(start_idx, end_idx);
                if (type_per_edge_) {
                  type_per_edge_arr[i] =
                      type_per_edge_.value().slice(0, start_idx, end_idx);
                }
              }
            });
      }));

304
  return c10::make_intrusive<FusedSampledSubgraph>(
305
      indptr.cumsum(0), torch::cat(indices_arr), original_column_node_ids,
306
307
308
309
310
311
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
368
369
370
371
372
 * @return A lambda function: (int64_t offset, int64_t num_neighbors,
 * PickedType* picked_data_ptr) -> torch::Tensor, which takes offset (the
 * starting edge ID of the given node) and num_neighbors (number of neighbors)
 * as params and puts the picked neighbors at the address specified by
 * picked_data_ptr.
373
 */
374
template <SamplerType S>
375
376
377
378
379
380
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
381
382
383
384
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
385
386
387
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
388
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
389
    } else {
390
      int64_t num_sampled = Pick(
391
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
392
          args, picked_data_ptr);
393
394
395
396
      if (type_per_edge) {
        std::sort(picked_data_ptr, picked_data_ptr + num_sampled);
      }
      return num_sampled;
397
398
399
400
    }
  };
}

401
template <typename NumPickFn, typename PickFn>
402
403
c10::intrusive_ptr<FusedSampledSubgraph>
FusedCSCSamplingGraph::SampleNeighborsImpl(
404
405
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
406
  const int64_t num_nodes = nodes.size(0);
407
  const auto indptr_options = indptr_.options();
408
  torch::Tensor num_picked_neighbors_per_node =
409
      torch::empty({num_nodes + 1}, indptr_options);
410

411
412
413
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
414
415
416
417
418
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

419
  AT_DISPATCH_INTEGRAL_TYPES(
420
421
422
423
424
425
426
427
428
429
      indptr_.scalar_type(), "SampleNeighborsImplWrappedWithIndptr", ([&] {
        using indptr_t = scalar_t;
        AT_DISPATCH_INTEGRAL_TYPES(
            nodes.scalar_type(), "SampleNeighborsImplWrappedWithNodes", ([&] {
              using nodes_t = scalar_t;
              const auto indptr_data = indptr_.data_ptr<indptr_t>();
              auto num_picked_neighbors_data_ptr =
                  num_picked_neighbors_per_node.data_ptr<indptr_t>();
              num_picked_neighbors_data_ptr[0] = 0;
              const auto nodes_data_ptr = nodes.data_ptr<nodes_t>();
430

431
432
433
434
435
436
437
438
439
440
441
442
              // Step 1. Calculate pick number of each node.
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      TORCH_CHECK(
                          nid >= 0 && nid < NumNodes(),
                          "The seed nodes' IDs should fall within the range of "
                          "the "
                          "graph's node IDs.");
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
443

444
445
446
447
448
449
                      num_picked_neighbors_data_ptr[i + 1] =
                          num_neighbors == 0
                              ? 0
                              : num_pick_fn(offset, num_neighbors);
                    }
                  });
450

451
452
453
454
              // Step 2. Calculate prefix sum to get total length and offsets of
              // each node. It's also the indptr of the generated subgraph.
              subgraph_indptr = num_picked_neighbors_per_node.cumsum(
                  0, indptr_.scalar_type());
455

456
457
458
459
460
461
462
463
464
465
              // Step 3. Allocate the tensor for picked neighbors.
              const auto total_length =
                  subgraph_indptr.data_ptr<indptr_t>()[num_nodes];
              picked_eids = torch::empty({total_length}, indptr_options);
              subgraph_indices =
                  torch::empty({total_length}, indices_.options());
              if (type_per_edge_.has_value()) {
                subgraph_type_per_edge = torch::empty(
                    {total_length}, type_per_edge_.value().options());
              }
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
              // Step 4. Pick neighbors for each node.
              auto picked_eids_data_ptr = picked_eids.data_ptr<indptr_t>();
              auto subgraph_indptr_data_ptr =
                  subgraph_indptr.data_ptr<indptr_t>();
              torch::parallel_for(
                  0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
                    for (int64_t i = begin; i < end; ++i) {
                      const auto nid = nodes_data_ptr[i];
                      const auto offset = indptr_data[nid];
                      const auto num_neighbors = indptr_data[nid + 1] - offset;
                      const auto picked_number =
                          num_picked_neighbors_data_ptr[i + 1];
                      const auto picked_offset = subgraph_indptr_data_ptr[i];
                      if (picked_number > 0) {
                        auto actual_picked_count = pick_fn(
                            offset, num_neighbors,
                            picked_eids_data_ptr + picked_offset);
                        TORCH_CHECK(
                            actual_picked_count == picked_number,
                            "Actual picked count doesn't match the calculated "
                            "pick "
                            "number.");
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
                        // Step 5. Calculate other attributes and return the
                        // subgraph.
                        AT_DISPATCH_INTEGRAL_TYPES(
                            subgraph_indices.scalar_type(),
                            "IndexSelectSubgraphIndices", ([&] {
                              auto subgraph_indices_data_ptr =
                                  subgraph_indices.data_ptr<scalar_t>();
                              auto indices_data_ptr =
                                  indices_.data_ptr<scalar_t>();
                              for (auto i = picked_offset;
                                   i < picked_offset + picked_number; ++i) {
                                subgraph_indices_data_ptr[i] =
                                    indices_data_ptr[picked_eids_data_ptr[i]];
                              }
                            }));
                        if (type_per_edge_.has_value()) {
                          AT_DISPATCH_INTEGRAL_TYPES(
                              subgraph_type_per_edge.value().scalar_type(),
                              "IndexSelectTypePerEdge", ([&] {
                                auto subgraph_type_per_edge_data_ptr =
                                    subgraph_type_per_edge.value()
                                        .data_ptr<scalar_t>();
                                auto type_per_edge_data_ptr =
                                    type_per_edge_.value().data_ptr<scalar_t>();
                                for (auto i = picked_offset;
                                     i < picked_offset + picked_number; ++i) {
                                  subgraph_type_per_edge_data_ptr[i] =
                                      type_per_edge_data_ptr
                                          [picked_eids_data_ptr[i]];
                                }
                              }));
521
                        }
522
523
524
525
                      }
                    }
                  });
            }));
526
      }));
527

528
529
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
530

531
  return c10::make_intrusive<FusedSampledSubgraph>(
532
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
533
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
534
535
}

536
c10::intrusive_ptr<FusedSampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
551

552
553
554
555
556
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
557
        nodes, return_eids,
558
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
559
560
561
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
562
563
564
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
565
        nodes, return_eids,
566
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
567
568
569
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
570
571
572
  }
}

573
std::tuple<torch::Tensor, torch::Tensor>
574
FusedCSCSamplingGraph::SampleNegativeEdgesUniform(
575
576
577
578
579
580
581
582
583
584
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

585
586
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
587
588
589
590
591
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
592
593
  auto node_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
  auto edge_type_to_id = DetensorizeDict(helper.ReadTorchTensorDict());
594
  auto node_attributes = helper.ReadTorchTensorDict();
595
  auto edge_attributes = helper.ReadTorchTensorDict();
596
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
597
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
598
      node_type_to_id, edge_type_to_id, node_attributes, edge_attributes);
599
600
601
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
602
603
604
  return graph;
}

605
606
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
607
    const std::string& shared_memory_name) {
608
  SharedMemoryHelper helper(shared_memory_name);
609
610
611
612
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
613
614
  helper.WriteTorchTensorDict(TensorizeDict(node_type_to_id_));
  helper.WriteTorchTensorDict(TensorizeDict(edge_type_to_id_));
615
  helper.WriteTorchTensorDict(node_attributes_);
616
617
618
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
619
620
}

621
622
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
623
    const std::string& shared_memory_name) {
624
  SharedMemoryHelper helper(shared_memory_name);
625
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
626
627
}

628
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
629
630
631
632
633
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

634
635
636
637
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
638
639
640
641
642
643
644
645
646
647
648
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

683
684
685
686
687
688
689
690
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
691
692
693
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
694
695
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
696
 * @param replace Boolean indicating whether the sample is performed with or
697
698
699
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
700
701
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
702
 */
703
template <typename PickedType>
704
inline int64_t UniformPick(
705
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
706
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
707
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
708
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
709
    return num_neighbors;
710
  } else if (replace) {
711
712
713
714
715
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
716
    return fanout;
717
  } else {
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
752
      return fanout;
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
773
      return fanout;
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
797
      return picked_set.size();
798
    }
799
800
801
  }
}

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
820
821
822
823
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
824
825
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
826
 * @param replace Boolean indicating whether the sample is performed with or
827
828
829
830
831
832
833
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
834
835
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
836
 */
837
template <typename PickedType>
838
inline int64_t NonUniformPick(
839
840
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
841
842
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
843
844
845
846
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
847
  if (num_positive_probs == 0) return 0;
848
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
849
850
851
852
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
853
    return num_positive_probs;
854
855
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    if (fanout == 0) return 0;
    AT_DISPATCH_FLOATING_TYPES(
        local_probs.scalar_type(), "MultinomialSampling", ([&] {
          auto local_probs_data_ptr = local_probs.data_ptr<scalar_t>();
          auto positive_probs_indices_ptr =
              positive_probs_indices.data_ptr<PickedType>();

          if (!replace) {
            // The algorithm is from gumbel softmax.
            // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
            // Here we can apply exp to the formula which will not affect result
            // of argmax or topk. Then we have
            // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
            // We can also simplify the formula above by
            // s = argmax( p / q ) where q ~ Exp(1).
            if (fanout == 1) {
              // Return argmax(p / q).
              scalar_t max_prob = 0;
              PickedType max_prob_index = -1;
              // We only care about the neighbors with non-zero probability.
              for (auto i = 0; i < num_positive_probs; ++i) {
                // Calculate (p / q) for the current neighbor.
                scalar_t current_prob =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                if (current_prob > max_prob) {
                  max_prob = current_prob;
                  max_prob_index = positive_probs_indices_ptr[i];
                }
              }
              *picked_data_ptr = max_prob_index + offset;
            } else {
              // Return topk(p / q).
              std::vector<std::pair<scalar_t, PickedType>> q(
                  num_positive_probs);
              for (auto i = 0; i < num_positive_probs; ++i) {
                q[i].first =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                q[i].second = positive_probs_indices_ptr[i];
              }
              if (fanout < num_positive_probs / 64) {
                // Use partial_sort.
                std::partial_sort(
                    q.begin(), q.begin() + fanout, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              } else {
                // Use nth_element.
                std::nth_element(
                    q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              }
            }
          } else {
            // Calculate cumulative sum of probabilities.
            std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
            scalar_t sum_probs = 0;
            for (auto i = 0; i < num_positive_probs; ++i) {
              sum_probs += local_probs_data_ptr[positive_probs_indices_ptr[i]];
              prefix_sum_probs[i] = sum_probs;
            }
            // Normalize.
            if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
              for (auto i = 0; i < num_positive_probs; ++i) {
                prefix_sum_probs[i] /= sum_probs;
              }
            }
            for (auto i = 0; i < fanout; ++i) {
              // Sample a probability mass from a uniform distribution.
              double uniform_sample =
                  RandomEngine::ThreadLocal()->Uniform(0., 1.);
              // Use a binary search to find the index.
              int sampled_index = std::lower_bound(
                                      prefix_sum_probs.begin(),
                                      prefix_sum_probs.end(), uniform_sample) -
                                  prefix_sum_probs.begin();
              picked_data_ptr[i] =
                  positive_probs_indices_ptr[sampled_index] + offset;
            }
          }
        }));
941
    return fanout;
942
943
944
  }
}

945
template <typename PickedType>
946
int64_t Pick(
947
948
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
949
    const torch::optional<torch::Tensor>& probs_or_mask,
950
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
951
  if (probs_or_mask.has_value()) {
952
    return NonUniformPick(
953
954
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
955
  } else {
956
    return UniformPick(
957
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
958
959
960
  }
}

961
template <SamplerType S, typename PickedType>
962
int64_t PickByEtype(
963
964
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
965
    const torch::Tensor& type_per_edge,
966
967
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
968
969
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
970
  int64_t pick_offset = 0;
971
972
973
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
974
975
976
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
977
          TORCH_CHECK(
978
              etype >= 0 && etype < (int64_t)fanouts.size(),
979
              "Etype values exceed the number of fanouts.");
980
          int64_t fanout = fanouts[etype];
981
982
983
984
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
985
986
          // Do sampling for one etype.
          if (fanout != 0) {
987
            int64_t picked_count = Pick(
988
                etype_begin, etype_end - etype_begin, fanout, replace, options,
989
990
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
991
992
993
994
          }
          etype_begin = etype_end;
        }
      }));
995
  return pick_offset;
996
997
}

998
template <typename PickedType>
999
int64_t Pick(
1000
1001
1002
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1003
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1004
  if (fanout == 0) return 0;
1005
  if (probs_or_mask.has_value()) {
1006
    if (fanout < 0) {
1007
      return NonUniformPick(
1008
1009
1010
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
1011
      int64_t picked_count;
1012
1013
1014
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
1015
              picked_count = LaborPick<true, true, scalar_t>(
1016
1017
1018
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
1019
              picked_count = LaborPick<true, false, scalar_t>(
1020
1021
1022
1023
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
1024
      return picked_count;
1025
1026
    }
  } else if (fanout < 0) {
1027
    return UniformPick(
1028
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
1029
  } else if (replace) {
1030
    return LaborPick<false, true, float>(
1031
        offset, num_neighbors, fanout, options,
1032
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1033
  } else {  // replace = false
1034
    return LaborPick<false, false, float>(
1035
        offset, num_neighbors, fanout, options,
1036
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
1054
1055
1056
1057
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
1058
1059
1060
1061
1062
1063
1064
1065
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
1066
1067
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
1068
 */
1069
template <
1070
1071
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
1072
inline int64_t LaborPick(
1073
1074
1075
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
1076
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
1077
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
1078
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
1079
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
1080
    return num_neighbors;
1081
1082
  }
  // Assuming max_degree of a vertex is <= 4 billion.
1083
1084
1085
1086
1087
1088
1089
1090
1091
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
1092
1093
1094
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1121
1122
1123
1124
1125
1126
1127
1128
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1129
1130
1131
1132
1133
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
1134
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1135
1136
1137
1138
1139
1140
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1141
1142
1143
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1144
1145
1146
1147
1148
1149
1150
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1151
                  remaining_data[i] = -1;
1152
1153
1154
1155
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1156
            const auto t = local_indices_data[i];
1157
1158
1159
1160
1161
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1162
            if (remaining_data[i] == -1) continue;
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1214
1215
1216
1217
1218
1219
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1220
  return num_sampled;
1221
1222
}

1223
1224
}  // namespace sampling
}  // namespace graphbolt