csc_sampling_graph.cc 33.7 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <cmath>
#include <limits>
13
14
#include <tuple>
#include <vector>
15

16
#include "./random.h"
17
18
#include "./shared_memory_utils.h"

19
20
21
22
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
23
    const torch::Tensor& indptr, const torch::Tensor& indices,
24
    const torch::optional<torch::Tensor>& node_type_offset,
25
26
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
27
    : indptr_(indptr),
28
      indices_(indices),
29
      node_type_offset_(node_type_offset),
30
31
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
32
33
34
35
36
37
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
38
    const torch::Tensor& indptr, const torch::Tensor& indices,
39
    const torch::optional<torch::Tensor>& node_type_offset,
40
41
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
42
43
44
45
46
47
48
49
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
50
51
52
53
54
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
55
  return c10::make_intrusive<CSCSamplingGraph>(
56
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
57
58
}

59
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
60
61
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
62
63
64
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
65
66
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
67
68
69
70
71
72
73
74
75
76
77
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
78
79
80
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
81
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
82
83
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
84
85
86
87
88
89
90
91
92
93
94
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
95
96
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
127
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
128
129
130
131
132
133
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
 * @return A lambda function: (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset and num_neighbors as params and returns a
 * tensor of picked neighbors.
 */
155
template <SamplerType S>
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
             int64_t offset, int64_t num_neighbors) {
    // If fanouts.size() > 1, perform sampling for each edge type of each node;
    // otherwise just sample once for each node with no regard of edge types.
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
          type_per_edge.value(), probs_or_mask, args);
    } else {
      return Pick(
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
          args);
    }
  };
}

template <typename PickFn>
178
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
179
    const torch::Tensor& nodes, bool return_eids, PickFn pick_fn) const {
180
  const int64_t num_nodes = nodes.size(0);
181
182
  const int64_t num_threads = torch::get_num_threads();
  std::vector<torch::Tensor> picked_neighbors_per_thread(num_threads);
183
184
185
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

186
187
188
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
189
190
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "parallel_for", ([&] {
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        torch::parallel_for(
            0, num_nodes, grain_size, [&](scalar_t begin, scalar_t end) {
              const auto indptr_options = indptr_.options();
              const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
              // Get current thread id.
              auto thread_id = torch::get_thread_num();
              int64_t local_grain_size = end - begin;
              std::vector<torch::Tensor> picked_neighbors_cur_thread(
                  local_grain_size);

              for (scalar_t i = begin; i < end; ++i) {
                const auto nid = nodes[i].item<int64_t>();
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

                if (num_neighbors == 0) {
                  // To avoid crashing during concatenation in the master
                  // thread, initializing with empty tensors.
                  picked_neighbors_cur_thread[i - begin] =
                      torch::tensor({}, indptr_options);
                  continue;
                }

218
219
220
221
                picked_neighbors_cur_thread[i - begin] =
                    pick_fn(offset, num_neighbors);

                // This number should be the same as the result of num_pick_fn.
222
223
224
225
226
227
                num_picked_neighbors_per_node[i + 1] =
                    picked_neighbors_cur_thread[i - begin].size(0);
              }
              picked_neighbors_per_thread[thread_id] =
                  torch::cat(picked_neighbors_cur_thread);
            });  // End of parallel_for.
228
      }));
229
230
231
  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

232
  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_thread);
233
234
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);
235
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
236
  if (type_per_edge_.has_value()) {
237
238
    subgraph_type_per_edge =
        torch::index_select(type_per_edge_.value(), 0, picked_eids);
239
  }
240
241
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
242
  return c10::make_intrusive<SampledSubgraph>(
243
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
244
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
245
246
}

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
262

263
264
265
266
267
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
268
269
270
271
        nodes, return_eids,
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
272
273
274
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
275
276
277
278
        nodes, return_eids,
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
279
280
281
  }
}

282
283
284
285
286
287
288
289
290
291
292
293
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

294
295
296
297
298
299
300
301
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
302
      optional_tensors[2], optional_tensors[3], torch::nullopt);
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

324
325
326
327
328
329
330
331
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
332
333
334
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
335
336
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
337
 * @param replace Boolean indicating whether the sample is performed with or
338
339
340
341
342
343
344
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor UniformPick(
345
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
346
347
    const torch::TensorOptions& options) {
  torch::Tensor picked_neighbors;
348
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
349
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
350
351
352
  } else if (replace) {
    picked_neighbors =
        torch::randint(offset, offset + num_neighbors, {fanout}, options);
353
  } else {
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    picked_neighbors = torch::empty({fanout}, options);
    AT_DISPATCH_INTEGRAL_TYPES(
        picked_neighbors.scalar_type(), "UniformPick", ([&] {
          scalar_t* picked_neighbors_data =
              picked_neighbors.data_ptr<scalar_t>();
          // We use different sampling strategies for different sampling case.
          if (fanout >= num_neighbors / 10) {
            // [Algorithm]
            // This algorithm is conceptually related to the Fisher-Yates
            // shuffle.
            //
            // [Complexity Analysis]
            // This algorithm's memory complexity is O(num_neighbors), but
            // it generates fewer random numbers (O(fanout)).
            //
            // (Compare) Reservoir algorithm is one of the most classical
            // sampling algorithms. Both the reservoir algorithm and our
            // algorithm offer distinct advantages, we need to compare to
            // illustrate our trade-offs.
            // The reservoir algorithm is memory-efficient (O(fanout)) but
            // creates many random numbers (O(num_neighbors)), which is
            // costly.
            //
            // [Practical Consideration]
            // Use this algorithm when `fanout >= num_neighbors / 10` to
            // reduce computation.
            // In this scenarios above, memory complexity is not a concern due
            // to the small size of both `fanout` and `num_neighbors`. And it
            // is efficient to allocate a small amount of memory. So the
            // algorithm performence is great in this case.
            std::vector<scalar_t> seq(num_neighbors);
            // Assign the seq with [offset, offset + num_neighbors].
            std::iota(seq.begin(), seq.end(), offset);
            for (int64_t i = 0; i < fanout; ++i) {
              auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
              std::swap(seq[i], seq[j]);
            }
            // Save the randomly sampled fanout elements to the output tensor.
            std::copy(seq.begin(), seq.begin() + fanout, picked_neighbors_data);
          } else if (fanout < 64) {
            // [Algorithm]
            // Use linear search to verify uniqueness.
            //
            // [Complexity Analysis]
            // Since the set of numbers is small (up to 64), so it is more
            // cost-effective for the CPU to use this algorithm.
            auto begin = picked_neighbors_data;
            auto end = picked_neighbors_data + fanout;

            while (begin != end) {
              // Put the new random number in the last position.
              *begin = RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors);
              // Check if a new value doesn't exist in current
              // range(picked_neighbors_data, begin). Otherwise get a new
              // value until we haven't unique range of elements.
              auto it = std::find(picked_neighbors_data, begin, *begin);
              if (it == begin) ++begin;
            }
          } else {
            // [Algorithm]
            // Use hash-set to verify uniqueness. In the best scenario, the
            // time complexity is O(fanout), assuming no conflicts occur.
            //
            // [Complexity Analysis]
            // Let K = (fanout / num_neighbors), the expected number of extra
            // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
            // means in the worst case scenario, the time complexity is
            // O(num_neighbors^2).
            //
            // [Practical Consideration]
            // In practice, we set the threshold K to 1/10. This trade-off is
            // due to the slower performance of std::unordered_set, which
            // would otherwise increase the sampling cost. By doing so, we
            // achieve a balance between theoretical efficiency and practical
            // performance.
            std::unordered_set<scalar_t> picked_set;
            while (static_cast<int64_t>(picked_set.size()) < fanout) {
              picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors));
            }
            std::copy(
                picked_set.begin(), picked_set.end(), picked_neighbors_data);
          }
        }));
439
440
441
442
  }
  return picked_neighbors;
}

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
461
462
463
464
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
465
466
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
467
 * @param replace Boolean indicating whether the sample is performed with or
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor NonUniformPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  torch::Tensor picked_neighbors;
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::tensor({}, options);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
    picked_neighbors =
        torch::index_select(picked_neighbors, 0, positive_probs_indices);
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
    picked_neighbors =
        torch::multinomial(local_probs, fanout, replace) + offset;
  }
  return picked_neighbors;
}

500
501
template <>
torch::Tensor Pick<SamplerType::NEIGHBOR>(
502
503
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
504
505
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::NEIGHBOR> args) {
506
507
508
509
510
511
512
513
  if (probs_or_mask.has_value()) {
    return NonUniformPick(
        offset, num_neighbors, fanout, replace, options, probs_or_mask);
  } else {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
  }
}

514
template <SamplerType S>
515
516
517
torch::Tensor PickByEtype(
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
518
    const torch::Tensor& type_per_edge,
519
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
520
521
522
523
  std::vector<torch::Tensor> picked_neighbors(
      fanouts.size(), torch::tensor({}, options));
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
524
525
526
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
527
528
529
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
530
          TORCH_CHECK(
531
              etype >= 0 && etype < (int64_t)fanouts.size(),
532
              "Etype values exceed the number of fanouts.");
533
          int64_t fanout = fanouts[etype];
534
535
536
537
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
538
539
          // Do sampling for one etype.
          if (fanout != 0) {
540
            picked_neighbors[etype] = Pick<S>(
541
                etype_begin, etype_end - etype_begin, fanout, replace, options,
542
                probs_or_mask, args);
543
544
545
546
          }
          etype_begin = etype_end;
        }
      }));
547
548
549
550

  return torch::cat(picked_neighbors, 0);
}

551
552
553
554
555
556
557
558
template <>
torch::Tensor Pick<SamplerType::LABOR>(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  if (fanout == 0) return torch::tensor({}, options);
  if (probs_or_mask.has_value()) {
559
560
561
562
    if (fanout < 0) {
      return NonUniformPick(
          offset, num_neighbors, fanout, replace, options, probs_or_mask);
    }
563
564
565
566
567
568
569
570
571
572
573
574
    torch::Tensor picked_neighbors;
    AT_DISPATCH_FLOATING_TYPES(
        probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
          if (replace) {
            picked_neighbors = LaborPick<true, true, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          } else {
            picked_neighbors = LaborPick<true, false, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          }
        }));
    return picked_neighbors;
575
576
  } else if (fanout < 0) {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
577
578
  } else if (replace) {
    return LaborPick<false, true>(
579
580
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
581
582
  } else {  // replace = false
    return LaborPick<false, false>(
583
584
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
602
603
604
605
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
 *
 * @return A tensor containing the picked neighbors.
 */
template <bool NonUniform, bool Replace, typename T>
inline torch::Tensor LaborPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
623
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
    return torch::arange(offset, offset + num_neighbors, options);
  }
  torch::Tensor heap_tensor = torch::empty({fanout * 2}, torch::kInt32);
  // Assuming max_degree of a vertex is <= 4 billion.
  auto heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
      heap_tensor.data_ptr<int32_t>());
  const T* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<T>() + offset : nullptr;
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
          torch::Tensor remaining =
              torch::ones({num_neighbors}, torch::kFloat32);
          float* rem_data = remaining.data_ptr<float>();
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
                    args.random_seed, t, args.num_nodes, j, rem_data[i],
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, ++heap_end);
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
                  rem_data[i] = -1;
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            for (int64_t j = 0; j < init_count; j++) {
              const auto t = local_indices_data[i];
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            if (rem_data[i] == -1) continue;
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
  torch::Tensor picked_neighbors = torch::empty({fanout}, options);
  AT_DISPATCH_INTEGRAL_TYPES(
      picked_neighbors.scalar_type(), "LaborPickOutput", ([&] {
        scalar_t* picked_neighbors_data = picked_neighbors.data_ptr<scalar_t>();
        for (int64_t i = 0; i < fanout; ++i) {
          const auto [rnd, j] = heap_data[i];
          if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
            picked_neighbors_data[num_sampled++] = offset + j;
          }
        }
      }));
  TORCH_CHECK(
      !Replace || num_sampled == fanout || num_sampled == 0,
      "Sampling with replacement should sample exactly fanout neighbors or 0!");
  return picked_neighbors.narrow(0, 0, num_sampled);
}

762
763
}  // namespace sampling
}  // namespace graphbolt