test_subgraph.py 28.3 KB
Newer Older
1
2
import unittest

3
import backend as F
4
5
6
7
import networkx as nx
import numpy as np
import pytest
import scipy.sparse as ssp
nv-dlasalle's avatar
nv-dlasalle committed
8
from test_utils import parametrize_idtype
Minjie Wang's avatar
Minjie Wang committed
9

10
11
import dgl

Minjie Wang's avatar
Minjie Wang committed
12
13
D = 5

14

15
def generate_graph(grad=False, add_data=True):
16
    g = dgl.DGLGraph().to(F.ctx())
17
    g.add_nodes(10)
Minjie Wang's avatar
Minjie Wang committed
18
19
20
21
22
23
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
24
25
26
27
28
29
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
30
31
        g.ndata["h"] = ncol
        g.edata["l"] = ecol
Minjie Wang's avatar
Minjie Wang committed
32
33
    return g

34

35
def test_edge_subgraph():
36
37
38
    # Test when the graph has no node data and edge data.
    g = generate_graph(add_data=False)
    eid = [0, 2, 3, 6, 7, 9]
39
40

    # relabel=True
41
    sg = g.edge_subgraph(eid)
42
43
44
    assert F.array_equal(
        sg.ndata[dgl.NID], F.tensor([0, 2, 4, 5, 1, 9], g.idtype)
    )
45
    assert F.array_equal(sg.edata[dgl.EID], F.tensor(eid, g.idtype))
46
47
    sg.ndata["h"] = F.arange(0, sg.number_of_nodes())
    sg.edata["h"] = F.arange(0, sg.number_of_edges())
48
49
50
51
52

    # relabel=False
    sg = g.edge_subgraph(eid, relabel_nodes=False)
    assert g.number_of_nodes() == sg.number_of_nodes()
    assert F.array_equal(sg.edata[dgl.EID], F.tensor(eid, g.idtype))
53
54
55
    sg.ndata["h"] = F.arange(0, sg.number_of_nodes())
    sg.edata["h"] = F.arange(0, sg.number_of_edges())

56

57
def test_subgraph():
Minjie Wang's avatar
Minjie Wang committed
58
    g = generate_graph()
59
60
    h = g.ndata["h"]
    l = g.edata["l"]
Minjie Wang's avatar
Minjie Wang committed
61
62
    nid = [0, 2, 3, 6, 7, 9]
    sg = g.subgraph(nid)
63
    eid = {2, 3, 4, 5, 10, 11, 12, 13, 16}
64
65
    assert set(F.asnumpy(sg.edata[dgl.EID])) == eid
    eid = sg.edata[dgl.EID]
66
67
68
    # the subgraph is empty initially except for NID/EID field
    assert len(sg.ndata) == 2
    assert len(sg.edata) == 2
69
    sh = sg.ndata["h"]
VoVAllen's avatar
VoVAllen committed
70
    assert F.allclose(F.gather_row(h, F.tensor(nid)), sh)
71
    """
Minjie Wang's avatar
Minjie Wang committed
72
73
74
    s, d, eid
    0, 1, 0
    1, 9, 1
Minjie Wang's avatar
Minjie Wang committed
75
76
77
78
    0, 2, 2    1
    2, 9, 3    1
    0, 3, 4    1
    3, 9, 5    1
Minjie Wang's avatar
Minjie Wang committed
79
80
81
    0, 4, 6
    4, 9, 7
    0, 5, 8
Minjie Wang's avatar
Minjie Wang committed
82
83
84
85
86
    5, 9, 9       3
    0, 6, 10   1
    6, 9, 11   1  3
    0, 7, 12   1
    7, 9, 13   1  3
Minjie Wang's avatar
Minjie Wang committed
87
    0, 8, 14
Minjie Wang's avatar
Minjie Wang committed
88
89
    8, 9, 15      3
    9, 0, 16   1
90
91
    """
    assert F.allclose(F.gather_row(l, eid), sg.edata["l"])
Minjie Wang's avatar
Minjie Wang committed
92
93
    # update the node/edge features on the subgraph should NOT
    # reflect to the parent graph.
94
95
96
    sg.ndata["h"] = F.zeros((6, D))
    assert F.allclose(h, g.ndata["h"])

Minjie Wang's avatar
Minjie Wang committed
97

98
99
def _test_map_to_subgraph():
    g = dgl.DGLGraph()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
100
101
102
103
104
    g.add_nodes(10)
    g.add_edges(F.arange(0, 9), F.arange(1, 10))
    h = g.subgraph([0, 1, 2, 5, 8])
    v = h.map_to_subgraph_nid([0, 8, 2])
    assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2]))
105

106

107
108
109
110
111
112
113
114
115
def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

116
117
118
119
120
121
122
123
124
125
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([0, 1, 2, 1], [0, 0, 1, 1]),
            ("user", "wishes", "game"): ([0, 2], [1, 0]),
            ("developer", "develops", "game"): ([0, 1], [0, 1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
126
    for etype in g.etypes:
127
        g.edges[etype].data["weight"] = F.randn((g.num_edges(etype),))
128
129
130
131
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

132
133
134
135
136

@unittest.skipIf(
    dgl.backend.backend_name == "mxnet",
    reason="MXNet doesn't support bool tensor",
)
nv-dlasalle's avatar
nv-dlasalle committed
137
@parametrize_idtype
138
139
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
140
141
    g_graph = g["follows"]
    g_bipartite = g["plays"]
142
143
144

    x = F.randn((3, 5))
    y = F.randn((2, 4))
145
146
    g.nodes["user"].data["h"] = x
    g.edges["follows"].data["h"] = y
147
148
149
150
151
152
153

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        assert F.array_equal(
            F.tensor(sg.nodes["user"].data[dgl.NID]), F.tensor([1, 2], idtype)
        )
        assert F.array_equal(
            F.tensor(sg.nodes["game"].data[dgl.NID]), F.tensor([0], idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["follows"].data[dgl.EID]), F.tensor([1], idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["plays"].data[dgl.EID]), F.tensor([1], idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["wishes"].data[dgl.EID]), F.tensor([1], idtype)
        )
        assert sg.number_of_nodes("developer") == 0
        assert sg.number_of_edges("develops") == 0
        assert F.array_equal(
            sg.nodes["user"].data["h"], g.nodes["user"].data["h"][1:3]
        )
        assert F.array_equal(
            sg.edges["follows"].data["h"], g.edges["follows"].data["h"][1:2]
        )

    sg1 = g.subgraph(
        {
            "user": F.tensor([False, True, True], dtype=F.bool),
            "game": F.tensor([True, False, False, False], dtype=F.bool),
        }
    )
184
    _check_subgraph(g, sg1)
185
186
187
188
189
190
191
    sg2 = g.edge_subgraph(
        {
            "follows": F.tensor([False, True], dtype=F.bool),
            "plays": F.tensor([False, True, False, False], dtype=F.bool),
            "wishes": F.tensor([False, True], dtype=F.bool),
        }
    )
192
    _check_subgraph(g, sg2)
193

194

nv-dlasalle's avatar
nv-dlasalle committed
195
@parametrize_idtype
196
197
def test_subgraph1(idtype):
    g = create_test_heterograph(idtype)
198
199
    g_graph = g["follows"]
    g_bipartite = g["plays"]
200
201
202

    x = F.randn((3, 5))
    y = F.randn((2, 4))
203
204
    g.nodes["user"].data["h"] = x
    g.edges["follows"].data["h"] = y
205
206
207
208
209
210
211

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        assert F.array_equal(
            F.tensor(sg.nodes["user"].data[dgl.NID]), F.tensor([1, 2], g.idtype)
        )
        assert F.array_equal(
            F.tensor(sg.nodes["game"].data[dgl.NID]), F.tensor([0], g.idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["follows"].data[dgl.EID]), F.tensor([1], g.idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["plays"].data[dgl.EID]), F.tensor([1], g.idtype)
        )
        assert F.array_equal(
            F.tensor(sg.edges["wishes"].data[dgl.EID]), F.tensor([1], g.idtype)
        )
        assert sg.number_of_nodes("developer") == 0
        assert sg.number_of_edges("develops") == 0
        assert F.array_equal(
            sg.nodes["user"].data["h"], g.nodes["user"].data["h"][1:3]
        )
        assert F.array_equal(
            sg.edges["follows"].data["h"], g.edges["follows"].data["h"][1:2]
        )

    sg1 = g.subgraph({"user": [1, 2], "game": [0]})
237
    _check_subgraph(g, sg1)
238
    sg2 = g.edge_subgraph({"follows": [1], "plays": [1], "wishes": [1]})
239
    _check_subgraph(g, sg2)
240
241

    # backend tensor input
242
243
244
245
246
247
    sg1 = g.subgraph(
        {
            "user": F.tensor([1, 2], dtype=idtype),
            "game": F.tensor([0], dtype=idtype),
        }
    )
248
    _check_subgraph(g, sg1)
249
250
251
252
253
254
255
    sg2 = g.edge_subgraph(
        {
            "follows": F.tensor([1], dtype=idtype),
            "plays": F.tensor([1], dtype=idtype),
            "wishes": F.tensor([1], dtype=idtype),
        }
    )
256
    _check_subgraph(g, sg2)
257
258

    # numpy input
259
    sg1 = g.subgraph({"user": np.array([1, 2]), "game": np.array([0])})
260
    _check_subgraph(g, sg1)
261
262
263
264
265
266
267
    sg2 = g.edge_subgraph(
        {
            "follows": np.array([1]),
            "plays": np.array([1]),
            "wishes": np.array([1]),
        }
    )
268
    _check_subgraph(g, sg2)
269
270
271
272
273
274
275
276
277

    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
278
279
280
281
            assert F.array_equal(
                F.tensor(sg.nodes["user"].data[dgl.NID]),
                F.tensor([1, 2], g.idtype),
            )
282
283
284
285
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

286
287
288
        assert F.array_equal(
            F.tensor(sg.edges["follows"].data[dgl.EID]), F.tensor([1], g.idtype)
        )
289
290

        if not preserve_nodes:
291
292
293
294
295
296
            assert F.array_equal(
                sg.nodes["user"].data["h"], g.nodes["user"].data["h"][1:3]
            )
        assert F.array_equal(
            sg.edges["follows"].data["h"], g.edges["follows"].data["h"][1:2]
        )
297
298
299
300
301
302
303

    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
304
305
306
307
308
309
310
311
            assert F.array_equal(
                F.tensor(sg.nodes["user"].data[dgl.NID]),
                F.tensor([0, 1], g.idtype),
            )
            assert F.array_equal(
                F.tensor(sg.nodes["game"].data[dgl.NID]),
                F.tensor([0], g.idtype),
            )
312
313
314
315
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

316
317
318
319
        assert F.array_equal(
            F.tensor(sg.edges["plays"].data[dgl.EID]),
            F.tensor([0, 1], g.idtype),
        )
320
321
322

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
323
324
325
326
327
328
329
330
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
331
332
333
334

    def _check_typed_subgraph1(g, sg):
        assert g.idtype == sg.idtype
        assert g.device == sg.device
335
336
        assert set(sg.ntypes) == {"user", "game"}
        assert set(sg.etypes) == {"follows", "plays", "wishes"}
337
338
339
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
340
341
            src_sg, dst_sg = sg.all_edges(etype=etype, order="eid")
            src_g, dst_g = g.all_edges(etype=etype, order="eid")
342
343
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        assert F.array_equal(
            sg.nodes["user"].data["h"], g.nodes["user"].data["h"]
        )
        assert F.array_equal(
            sg.edges["follows"].data["h"], g.edges["follows"].data["h"]
        )
        g.nodes["user"].data["h"] = F.scatter_row(
            g.nodes["user"].data["h"], F.tensor([2]), F.randn((1, 5))
        )
        g.edges["follows"].data["h"] = F.scatter_row(
            g.edges["follows"].data["h"], F.tensor([1]), F.randn((1, 4))
        )
        assert F.array_equal(
            sg.nodes["user"].data["h"], g.nodes["user"].data["h"]
        )
        assert F.array_equal(
            sg.edges["follows"].data["h"], g.edges["follows"].data["h"]
        )
362
363

    def _check_typed_subgraph2(g, sg):
364
365
        assert set(sg.ntypes) == {"developer", "game"}
        assert set(sg.etypes) == {"develops"}
366
367
368
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
369
370
            src_sg, dst_sg = sg.all_edges(etype=etype, order="eid")
            src_g, dst_g = g.all_edges(etype=etype, order="eid")
371
372
373
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

374
    sg3 = g.node_type_subgraph(["user", "game"])
375
    _check_typed_subgraph1(g, sg3)
376
    sg4 = g.edge_type_subgraph(["develops"])
377
    _check_typed_subgraph2(g, sg4)
378
    sg5 = g.edge_type_subgraph(["follows", "plays", "wishes"])
379
380
381
    _check_typed_subgraph1(g, sg5)

    # Test for restricted format
382
    for fmt in ["csr", "csc", "coo"]:
383
384
385
386
        g = dgl.graph(([0, 1], [1, 2])).formats(fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
387
        src, dst = sg.edges(order="eid")
388
389
390
391
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))

392

nv-dlasalle's avatar
nv-dlasalle committed
393
@parametrize_idtype
394
def test_in_subgraph(idtype):
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    hg = dgl.heterograph(
        {
            ("user", "follow", "user"): (
                [1, 2, 3, 0, 2, 3, 0],
                [0, 0, 0, 1, 1, 1, 2],
            ),
            ("user", "play", "game"): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ("game", "liked-by", "user"): (
                [2, 2, 2, 1, 1, 0],
                [0, 1, 2, 0, 3, 0],
            ),
            ("user", "flips", "coin"): ([0, 1, 2, 3], [0, 0, 0, 0]),
        },
        idtype=idtype,
        num_nodes_dict={"user": 5, "game": 10, "coin": 8},
    ).to(F.ctx())
    subg = dgl.in_subgraph(hg, {"user": [0, 1], "game": 0})
412
413
414
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
415
    u, v = subg["follow"].edges()
416
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
417
418
419
420
421
    assert F.array_equal(
        hg["follow"].edge_ids(u, v), subg["follow"].edata[dgl.EID]
    )
    assert edge_set == {(1, 0), (2, 0), (3, 0), (0, 1), (2, 1), (3, 1)}
    u, v = subg["play"].edges()
422
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
423
424
425
    assert F.array_equal(hg["play"].edge_ids(u, v), subg["play"].edata[dgl.EID])
    assert edge_set == {(0, 0)}
    u, v = subg["liked-by"].edges()
426
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
427
428
429
430
431
    assert F.array_equal(
        hg["liked-by"].edge_ids(u, v), subg["liked-by"].edata[dgl.EID]
    )
    assert edge_set == {(2, 0), (2, 1), (1, 0), (0, 0)}
    assert subg["flips"].number_of_edges() == 0
432
433
434
435
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
436
437
    subg = dgl.in_subgraph(hg, {"user": [0, 1], "game": 0}, store_ids=False)
    for etype in ["follow", "play", "liked-by"]:
438
439
440
441
442
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
443
    subg = dgl.in_subgraph(hg, {"user": [0, 1], "game": 0}, relabel_nodes=True)
444
445
446
447
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

448
449
450
451
452
453
    u, v = subg["follow"].edges()
    old_u = F.gather_row(subg.nodes["user"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["user"].data[dgl.NID], v)
    assert F.array_equal(
        hg["follow"].edge_ids(old_u, old_v), subg["follow"].edata[dgl.EID]
    )
454
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
455
456
457
458
459
460
461
462
    assert edge_set == {(1, 0), (2, 0), (3, 0), (0, 1), (2, 1), (3, 1)}

    u, v = subg["play"].edges()
    old_u = F.gather_row(subg.nodes["user"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["game"].data[dgl.NID], v)
    assert F.array_equal(
        hg["play"].edge_ids(old_u, old_v), subg["play"].edata[dgl.EID]
    )
463
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
464
465
466
467
468
469
470
471
    assert edge_set == {(0, 0)}

    u, v = subg["liked-by"].edges()
    old_u = F.gather_row(subg.nodes["game"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["user"].data[dgl.NID], v)
    assert F.array_equal(
        hg["liked-by"].edge_ids(old_u, old_v), subg["liked-by"].edata[dgl.EID]
    )
472
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
473
474
475
476
477
478
    assert edge_set == {(2, 0), (2, 1), (1, 0), (0, 0)}

    assert subg.num_nodes("user") == 4
    assert subg.num_nodes("game") == 3
    assert subg.num_nodes("coin") == 0
    assert subg.num_edges("flips") == 0
479

480

nv-dlasalle's avatar
nv-dlasalle committed
481
@parametrize_idtype
482
def test_out_subgraph(idtype):
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    hg = dgl.heterograph(
        {
            ("user", "follow", "user"): (
                [1, 2, 3, 0, 2, 3, 0],
                [0, 0, 0, 1, 1, 1, 2],
            ),
            ("user", "play", "game"): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ("game", "liked-by", "user"): (
                [2, 2, 2, 1, 1, 0],
                [0, 1, 2, 0, 3, 0],
            ),
            ("user", "flips", "coin"): ([0, 1, 2, 3], [0, 0, 0, 0]),
        },
        idtype=idtype,
    ).to(F.ctx())
    subg = dgl.out_subgraph(hg, {"user": [0, 1], "game": 0})
499
500
501
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
502
    u, v = subg["follow"].edges()
503
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
504
505
506
507
508
    assert edge_set == {(1, 0), (0, 1), (0, 2)}
    assert F.array_equal(
        hg["follow"].edge_ids(u, v), subg["follow"].edata[dgl.EID]
    )
    u, v = subg["play"].edges()
509
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
510
511
512
    assert edge_set == {(0, 0), (0, 1), (1, 2)}
    assert F.array_equal(hg["play"].edge_ids(u, v), subg["play"].edata[dgl.EID])
    u, v = subg["liked-by"].edges()
513
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
514
515
516
517
518
    assert edge_set == {(0, 0)}
    assert F.array_equal(
        hg["liked-by"].edge_ids(u, v), subg["liked-by"].edata[dgl.EID]
    )
    u, v = subg["flips"].edges()
519
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
520
521
522
523
    assert edge_set == {(0, 0), (1, 0)}
    assert F.array_equal(
        hg["flips"].edge_ids(u, v), subg["flips"].edata[dgl.EID]
    )
524
525
526
527
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
528
    subg = dgl.out_subgraph(hg, {"user": [0, 1], "game": 0}, store_ids=False)
529
530
531
532
533
534
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
535
    subg = dgl.out_subgraph(hg, {"user": [1], "game": 0}, relabel_nodes=True)
536
537
538
539
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

540
541
542
    u, v = subg["follow"].edges()
    old_u = F.gather_row(subg.nodes["user"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["user"].data[dgl.NID], v)
543
544
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
545
546
547
    assert F.array_equal(
        hg["follow"].edge_ids(old_u, old_v), subg["follow"].edata[dgl.EID]
    )
548

549
550
551
    u, v = subg["play"].edges()
    old_u = F.gather_row(subg.nodes["user"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["game"].data[dgl.NID], v)
552
553
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
554
555
556
    assert F.array_equal(
        hg["play"].edge_ids(old_u, old_v), subg["play"].edata[dgl.EID]
    )
557

558
559
560
    u, v = subg["liked-by"].edges()
    old_u = F.gather_row(subg.nodes["game"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["user"].data[dgl.NID], v)
561
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
562
563
564
565
566
567
568
569
    assert edge_set == {(0, 0)}
    assert F.array_equal(
        hg["liked-by"].edge_ids(old_u, old_v), subg["liked-by"].edata[dgl.EID]
    )

    u, v = subg["flips"].edges()
    old_u = F.gather_row(subg.nodes["user"].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes["coin"].data[dgl.NID], v)
570
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
571
572
573
574
575
576
577
578
    assert edge_set == {(1, 0)}
    assert F.array_equal(
        hg["flips"].edge_ids(old_u, old_v), subg["flips"].edata[dgl.EID]
    )
    assert subg.num_nodes("user") == 2
    assert subg.num_nodes("game") == 2
    assert subg.num_nodes("coin") == 1

579
580
581
582

def test_subgraph_message_passing():
    # Unit test for PR #2055
    g = dgl.graph(([0, 1, 2], [2, 3, 4])).to(F.cpu())
583
    g.ndata["x"] = F.copy_to(F.randn((5, 6)), F.cpu())
584
    sg = g.subgraph([1, 2, 3]).to(F.ctx())
585
586
587
588
589
    sg.update_all(
        lambda edges: {"x": edges.src["x"]},
        lambda nodes: {"y": F.sum(nodes.mailbox["x"], 1)},
    )

590

nv-dlasalle's avatar
nv-dlasalle committed
591
@parametrize_idtype
592
def test_khop_in_subgraph(idtype):
593
594
595
596
    g = dgl.graph(
        ([1, 1, 2, 3, 4], [0, 2, 0, 4, 2]), idtype=idtype, device=F.ctx()
    )
    g.edata["w"] = F.tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]])
Mufei Li's avatar
Mufei Li committed
597
    sg, inv = dgl.khop_in_subgraph(g, 0, k=2)
598
599
600
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
601
602
603
604
605
606
607
    assert edge_set == {(1, 0), (1, 2), (2, 0), (3, 2)}
    assert F.array_equal(
        sg.edata[dgl.EID], F.tensor([0, 1, 2, 4], dtype=idtype)
    )
    assert F.array_equal(
        sg.edata["w"], F.tensor([[0, 1], [2, 3], [4, 5], [8, 9]])
    )
Mufei Li's avatar
Mufei Li committed
608
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
609
610

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
611
    sg, inv = dgl.khop_in_subgraph(g, [0, 2], k=1)
612
613
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
614
    sg, inv = dgl.khop_in_subgraph(g, F.tensor([0, 2], idtype), k=1)
615
616
617
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
618
    sg, inv = dgl.khop_in_subgraph(g, 1, k=2)
619
620
621
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
622
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
623

624
625
626
627
628
629
630
631
632
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1, 1, 2], [0, 0, 2, 1]),
            ("user", "follows", "user"): ([0, 1, 1], [1, 2, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    sg, inv = dgl.khop_in_subgraph(g, {"game": 0}, k=2)
633
    assert sg.idtype == idtype
634
635
    assert sg.num_nodes("game") == 1
    assert sg.num_nodes("user") == 2
636
637
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
638
    u, v = sg["follows"].edges()
639
640
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
641
    u, v = sg["plays"].edges()
642
643
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
644
    assert F.array_equal(F.astype(inv["game"], idtype), F.tensor([0], idtype))
645
646

    # Test isolated node
647
    sg, inv = dgl.khop_in_subgraph(g, {"user": 0}, k=2)
648
    assert sg.idtype == idtype
649
650
651
652
653
    assert sg.num_nodes("game") == 0
    assert sg.num_nodes("user") == 1
    assert sg.num_edges("follows") == 0
    assert sg.num_edges("plays") == 0
    assert F.array_equal(F.astype(inv["user"], idtype), F.tensor([0], idtype))
654
655

    # Test multiple nodes
656
657
658
659
    sg, inv = dgl.khop_in_subgraph(
        g, {"user": F.tensor([0, 1], idtype), "game": 0}, k=1
    )
    u, v = sg["follows"].edges()
660
661
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
662
    u, v = sg["plays"].edges()
663
664
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
665
666
667
668
669
    assert F.array_equal(
        F.astype(inv["user"], idtype), F.tensor([0, 1], idtype)
    )
    assert F.array_equal(F.astype(inv["game"], idtype), F.tensor([0], idtype))

670

nv-dlasalle's avatar
nv-dlasalle committed
671
@parametrize_idtype
672
def test_khop_out_subgraph(idtype):
673
674
675
676
    g = dgl.graph(
        ([0, 2, 0, 4, 2], [1, 1, 2, 3, 4]), idtype=idtype, device=F.ctx()
    )
    g.edata["w"] = F.tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]])
Mufei Li's avatar
Mufei Li committed
677
    sg, inv = dgl.khop_out_subgraph(g, 0, k=2)
678
679
680
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
681
682
683
684
685
686
687
    assert edge_set == {(0, 1), (2, 1), (0, 2), (2, 3)}
    assert F.array_equal(
        sg.edata[dgl.EID], F.tensor([0, 2, 1, 4], dtype=idtype)
    )
    assert F.array_equal(
        sg.edata["w"], F.tensor([[0, 1], [4, 5], [2, 3], [8, 9]])
    )
Mufei Li's avatar
Mufei Li committed
688
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
689
690

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
691
    sg, inv = dgl.khop_out_subgraph(g, [0, 2], k=1)
692
693
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
694
    sg, inv = dgl.khop_out_subgraph(g, F.tensor([0, 2], idtype), k=1)
695
696
697
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
698
    sg, inv = dgl.khop_out_subgraph(g, 1, k=2)
699
700
701
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
702
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
703

704
705
706
707
708
709
710
711
712
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1, 1, 2], [0, 0, 2, 1]),
            ("user", "follows", "user"): ([0, 1], [1, 3]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    sg, inv = dgl.khop_out_subgraph(g, {"user": 0}, k=2)
713
    assert sg.idtype == idtype
714
715
    assert sg.num_nodes("game") == 2
    assert sg.num_nodes("user") == 3
716
717
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
718
    u, v = sg["follows"].edges()
719
720
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1), (1, 2)}
721
    u, v = sg["plays"].edges()
722
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
723
724
    assert edge_set == {(0, 0), (1, 0), (1, 1)}
    assert F.array_equal(F.astype(inv["user"], idtype), F.tensor([0], idtype))
725
726

    # Test isolated node
727
    sg, inv = dgl.khop_out_subgraph(g, {"user": 3}, k=2)
728
    assert sg.idtype == idtype
729
730
731
732
733
    assert sg.num_nodes("game") == 0
    assert sg.num_nodes("user") == 1
    assert sg.num_edges("follows") == 0
    assert sg.num_edges("plays") == 0
    assert F.array_equal(F.astype(inv["user"], idtype), F.tensor([0], idtype))
734
735

    # Test multiple nodes
736
737
738
739
740
    sg, inv = dgl.khop_out_subgraph(
        g, {"user": F.tensor([2], idtype), "game": 0}, k=1
    )
    assert sg.num_edges("follows") == 0
    u, v = sg["plays"].edges()
741
742
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
743
744
    assert F.array_equal(F.astype(inv["user"], idtype), F.tensor([0], idtype))
    assert F.array_equal(F.astype(inv["game"], idtype), F.tensor([0], idtype))
745

746
747

@unittest.skipIf(not F.gpu_ctx(), "only necessary with GPU")
748
@pytest.mark.parametrize(
749
750
751
752
    "parent_idx_device",
    [("cpu", F.cpu()), ("cuda", F.cuda()), ("uva", F.cpu()), ("uva", F.cuda())],
)
@pytest.mark.parametrize("child_device", [F.cpu(), F.cuda()])
753
754
def test_subframes(parent_idx_device, child_device):
    parent_device, idx_device = parent_idx_device
755
756
757
    g = dgl.graph(
        (F.tensor([1, 2, 3], dtype=F.int64), F.tensor([2, 3, 4], dtype=F.int64))
    )
758
    print(g.device)
759
760
    g.ndata["x"] = F.randn((5, 4))
    g.edata["a"] = F.randn((3, 6))
761
    idx = F.tensor([1, 2], dtype=F.int64)
762
    if parent_device == "cuda":
763
        g = g.to(F.cuda())
764
765
    elif parent_device == "uva":
        if F.backend_name != "pytorch":
766
            pytest.skip("UVA only supported for PyTorch")
767
768
769
        g = g.to(F.cpu())
        g.create_formats_()
        g.pin_memory_()
770
    elif parent_device == "cpu":
771
772
773
        g = g.to(F.cpu())
    idx = F.copy_to(idx, idx_device)
    sg = g.sample_neighbors(idx, 2).to(child_device)
774
775
    assert sg.device == F.context(sg.ndata["x"])
    assert sg.device == F.context(sg.edata["a"])
776
    assert sg.device == child_device
777
778
779
780
781
782
    if parent_device != "uva":
        sg = g.to(child_device).sample_neighbors(
            F.copy_to(idx, child_device), 2
        )
        assert sg.device == F.context(sg.ndata["x"])
        assert sg.device == F.context(sg.edata["a"])
783
        assert sg.device == child_device
784
    if parent_device == "uva":
785
786
        g.unpin_memory_()

787
788
789
790
791
792
793
794
795

@unittest.skipIf(
    F._default_context_str != "gpu", reason="UVA only available on GPU"
)
@pytest.mark.parametrize("device", [F.cpu(), F.cuda()])
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch",
    reason="UVA only supported for PyTorch",
)
nv-dlasalle's avatar
nv-dlasalle committed
796
@parametrize_idtype
797
798
799
800
801
def test_uva_subgraph(idtype, device):
    g = create_test_heterograph(idtype)
    g = g.to(F.cpu())
    g.create_formats_()
    g.pin_memory_()
802
803
    indices = {"user": F.copy_to(F.tensor([0], idtype), device)}
    edge_indices = {"follows": F.copy_to(F.tensor([0], idtype), device)}
804
805
806
807
    assert g.subgraph(indices).device == device
    assert g.edge_subgraph(edge_indices).device == device
    assert g.in_subgraph(indices).device == device
    assert g.out_subgraph(indices).device == device
808
    if dgl.backend.backend_name != "tensorflow":
809
810
811
812
813
814
815
816
        # (BarclayII) Most of Tensorflow functions somehow do not preserve device: a CPU tensor
        # becomes a GPU tensor after operations such as concat(), unique() or even sin().
        # Not sure what should be the best fix.
        assert g.khop_in_subgraph(indices, 1)[0].device == device
        assert g.khop_out_subgraph(indices, 1)[0].device == device
    assert g.sample_neighbors(indices, 1).device == device
    g.unpin_memory_()

817
818

if __name__ == "__main__":
819
820
    test_edge_subgraph()
    # test_uva_subgraph(F.int64, F.cpu())