test_subgraph.py 25.5 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
import numpy as np
2
3
4
import networkx as nx
import unittest
import scipy.sparse as ssp
5
import pytest
6

7
import dgl
8
import backend as F
9
from test_utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
10
11
12

D = 5

13
def generate_graph(grad=False, add_data=True):
14
    g = dgl.DGLGraph().to(F.ctx())
15
    g.add_nodes(10)
Minjie Wang's avatar
Minjie Wang committed
16
17
18
19
20
21
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
22
23
24
25
26
27
28
29
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
        g.ndata['h'] = ncol
        g.edata['l'] = ecol
Minjie Wang's avatar
Minjie Wang committed
30
31
    return g

32
def test_edge_subgraph():
33
34
35
36
37
38
39
    # Test when the graph has no node data and edge data.
    g = generate_graph(add_data=False)
    eid = [0, 2, 3, 6, 7, 9]
    sg = g.edge_subgraph(eid)
    sg.ndata['h'] = F.arange(0, sg.number_of_nodes())
    sg.edata['h'] = F.arange(0, sg.number_of_edges())

40
def test_subgraph():
Minjie Wang's avatar
Minjie Wang committed
41
    g = generate_graph()
42
43
    h = g.ndata['h']
    l = g.edata['l']
Minjie Wang's avatar
Minjie Wang committed
44
45
    nid = [0, 2, 3, 6, 7, 9]
    sg = g.subgraph(nid)
46
    eid = {2, 3, 4, 5, 10, 11, 12, 13, 16}
47
48
    assert set(F.asnumpy(sg.edata[dgl.EID])) == eid
    eid = sg.edata[dgl.EID]
49
50
51
    # the subgraph is empty initially except for NID/EID field
    assert len(sg.ndata) == 2
    assert len(sg.edata) == 2
52
    sh = sg.ndata['h']
VoVAllen's avatar
VoVAllen committed
53
    assert F.allclose(F.gather_row(h, F.tensor(nid)), sh)
Minjie Wang's avatar
Minjie Wang committed
54
55
56
57
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
Minjie Wang's avatar
Minjie Wang committed
58
59
60
61
    0, 2, 2    1
    2, 9, 3    1
    0, 3, 4    1
    3, 9, 5    1
Minjie Wang's avatar
Minjie Wang committed
62
63
64
    0, 4, 6
    4, 9, 7
    0, 5, 8
Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
    5, 9, 9       3
    0, 6, 10   1
    6, 9, 11   1  3
    0, 7, 12   1
    7, 9, 13   1  3
Minjie Wang's avatar
Minjie Wang committed
70
    0, 8, 14
Minjie Wang's avatar
Minjie Wang committed
71
72
    8, 9, 15      3
    9, 0, 16   1
Minjie Wang's avatar
Minjie Wang committed
73
    '''
74
    assert F.allclose(F.gather_row(l, eid), sg.edata['l'])
Minjie Wang's avatar
Minjie Wang committed
75
76
    # update the node/edge features on the subgraph should NOT
    # reflect to the parent graph.
77
78
    sg.ndata['h'] = F.zeros((6, D))
    assert F.allclose(h, g.ndata['h'])
Minjie Wang's avatar
Minjie Wang committed
79

80
81
def _test_map_to_subgraph():
    g = dgl.DGLGraph()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
82
83
84
85
86
    g.add_nodes(10)
    g.add_edges(F.arange(0, 9), F.arange(1, 10))
    h = g.subgraph([0, 1, 2, 5, 8])
    v = h.map_to_subgraph_nid([0, 8, 2])
    assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2]))
87
88
89
90
91
92
93
94
95
96

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

97
98
99
100
101
102
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
    _check_subgraph(g, sg1)
143
144
145
146
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                           'plays': F.tensor([False, True, False, False], dtype=F.bool),
                           'wishes': F.tensor([False, True], dtype=F.bool)})
    _check_subgraph(g, sg2)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

@parametrize_dtype
def test_subgraph1(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], g.idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
182
183
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)
184
185
186
187
188

    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
    _check_subgraph(g, sg1)
189
190
191
192
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                           'plays': F.tensor([1], dtype=idtype),
                           'wishes': F.tensor([1], dtype=idtype)})
    _check_subgraph(g, sg2)
193
194
195
196
197

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
198
199
200
201
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], g.idtype))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], g.idtype))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
243
244
245
246
247
248
249
250
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    def _check_typed_subgraph1(g, sg):
        assert g.idtype == sg.idtype
        assert g.device == sg.device
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

    sg3 = g.node_type_subgraph(['user', 'game'])
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)

    # Test for restricted format
290
291
292
293
294
295
296
297
298
299
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph(([0, 1], [1, 2])).formats(fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))

300
301
@parametrize_dtype
def test_in_subgraph(idtype):
302
303
304
305
306
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
307
    }, idtype=idtype, num_nodes_dict={'user': 5, 'game': 10, 'coin': 8}).to(F.ctx())
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, store_ids=False)
    for etype in ['follow', 'play', 'liked-by']:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}

    assert subg.num_nodes('user') == 4
    assert subg.num_nodes('game') == 3
    assert subg.num_nodes('coin') == 0
    assert subg.num_edges('flips') == 0
366
367
368

@parametrize_dtype
def test_out_subgraph(idtype):
369
370
371
372
373
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
374
    }, idtype=idtype).to(F.ctx())
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0}, store_ids=False)
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.out_subgraph(hg, {'user': [1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])

    u, v = subg['flips'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['coin'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(old_u, old_v), subg['flips'].edata[dgl.EID])
    assert subg.num_nodes('user') == 2
    assert subg.num_nodes('game') == 2
    assert subg.num_nodes('coin') == 1
441
442
443
444
445
446
447

def test_subgraph_message_passing():
    # Unit test for PR #2055
    g = dgl.graph(([0, 1, 2], [2, 3, 4])).to(F.cpu())
    g.ndata['x'] = F.copy_to(F.randn((5, 6)), F.cpu())
    sg = g.subgraph([1, 2, 3]).to(F.ctx())
    sg.update_all(lambda edges: {'x': edges.src['x']}, lambda nodes: {'y': F.sum(nodes.mailbox['x'], 1)})
448
449
450
451
452
453
454
455
456
457
458

@parametrize_dtype
def test_khop_in_subgraph(idtype):
    g = dgl.graph(([1, 1, 2, 3, 4], [0, 2, 0, 4, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
459
    sg, inv = dgl.khop_in_subgraph(g, 0, k=2)
460
461
462
463
464
465
466
467
468
469
470
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0), (1,2), (2,0), (3,2)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 1, 2, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
471
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
472
473

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
474
    sg, inv = dgl.khop_in_subgraph(g, [0, 2], k=1)
475
476
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
477
    sg, inv = dgl.khop_in_subgraph(g, F.tensor([0, 2], idtype), k=1)
478
479
480
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
481
    sg, inv = dgl.khop_in_subgraph(g, 1, k=2)
482
483
484
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
485
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
486
487
488
489
490

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
491
    sg, inv = dgl.khop_in_subgraph(g, {'game': 0}, k=2)
492
493
494
495
496
497
498
499
500
501
502
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 1
    assert sg.num_nodes('user') == 2
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
503
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
504
505

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
506
    sg, inv = dgl.khop_in_subgraph(g, {'user': 0}, k=2)
507
508
509
510
511
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
512
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
513
514

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
515
    sg, inv = dgl.khop_in_subgraph(g, {'user': F.tensor([0, 1], idtype), 'game': 0}, k=1)
516
517
518
519
520
521
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
522
523
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0, 1], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
524
525
526
527
528
529
530
531
532
533
534

@parametrize_dtype
def test_khop_out_subgraph(idtype):
    g = dgl.graph(([0, 2, 0, 4, 2], [1, 1, 2, 3, 4]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
535
    sg, inv = dgl.khop_out_subgraph(g, 0, k=2)
536
537
538
539
540
541
542
543
544
545
546
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,1), (2,1), (0,2), (2,3)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 2, 1, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [4, 5],
        [2, 3],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
547
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
548
549

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
550
    sg, inv = dgl.khop_out_subgraph(g, [0, 2], k=1)
551
552
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
553
    sg, inv = dgl.khop_out_subgraph(g, F.tensor([0, 2], idtype), k=1)
554
555
556
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
557
    sg, inv = dgl.khop_out_subgraph(g, 1, k=2)
558
559
560
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
561
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
562
563
564
565
566

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1], [1, 3]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
567
    sg, inv = dgl.khop_out_subgraph(g, {'user': 0}, k=2)
568
569
570
571
572
573
574
575
576
577
578
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 2
    assert sg.num_nodes('user') == 3
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1), (1, 2)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0), (1,0), (1,1)}
Mufei Li's avatar
Mufei Li committed
579
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
580
581

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
582
    sg, inv = dgl.khop_out_subgraph(g, {'user': 3}, k=2)
583
584
585
586
587
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
588
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
589
590

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
591
    sg, inv = dgl.khop_out_subgraph(g, {'user': F.tensor([2], idtype), 'game': 0}, k=1)
592
593
594
595
    assert sg.num_edges('follows') == 0
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
Mufei Li's avatar
Mufei Li committed
596
597
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
598

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
@unittest.skipIf(not F.gpu_ctx(), 'only necessary with GPU')
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="UVA only supported for PyTorch")
@pytest.mark.parametrize(
    'parent_idx_device', [('cpu', F.cpu()), ('cuda', F.cuda()), ('uva', F.cpu()), ('uva', F.cuda())])
@pytest.mark.parametrize('child_device', [F.cpu(), F.cuda()])
def test_subframes(parent_idx_device, child_device):
    parent_device, idx_device = parent_idx_device
    g = dgl.graph((F.tensor([1,2,3], dtype=F.int64), F.tensor([2,3,4], dtype=F.int64)))
    print(g.device)
    g.ndata['x'] = F.randn((5, 4))
    g.edata['a'] = F.randn((3, 6))
    idx = F.tensor([1, 2], dtype=F.int64)
    if parent_device == 'cuda':
        g = g.to(F.cuda())
    elif parent_device == 'uva':
        g = g.to(F.cpu())
        g.create_formats_()
        g.pin_memory_()
    elif parent_device == 'cpu':
        g = g.to(F.cpu())
    idx = F.copy_to(idx, idx_device)
    sg = g.sample_neighbors(idx, 2).to(child_device)
    assert sg.device == sg.ndata['x'].device
    assert sg.device == sg.edata['a'].device
    assert sg.device == child_device
    if parent_device != 'uva':
        sg = g.to(child_device).sample_neighbors(F.copy_to(idx, child_device), 2)
        assert sg.device == sg.ndata['x'].device
        assert sg.device == sg.edata['a'].device
        assert sg.device == child_device
    if parent_device == 'uva':
        g.unpin_memory_()

632
633
if __name__ == '__main__':
    test_khop_out_subgraph(F.int64)
634
    test_subframes(('cpu', F.cpu()), F.cuda())