test_subgraph.py 26.6 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
import numpy as np
2
3
4
import networkx as nx
import unittest
import scipy.sparse as ssp
5
import pytest
6

7
import dgl
8
import backend as F
9
from test_utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
10
11
12

D = 5

13
def generate_graph(grad=False, add_data=True):
14
    g = dgl.DGLGraph().to(F.ctx())
15
    g.add_nodes(10)
Minjie Wang's avatar
Minjie Wang committed
16
17
18
19
20
21
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
22
23
24
25
26
27
28
29
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
        g.ndata['h'] = ncol
        g.edata['l'] = ecol
Minjie Wang's avatar
Minjie Wang committed
30
31
    return g

32
def test_edge_subgraph():
33
34
35
36
37
38
39
    # Test when the graph has no node data and edge data.
    g = generate_graph(add_data=False)
    eid = [0, 2, 3, 6, 7, 9]
    sg = g.edge_subgraph(eid)
    sg.ndata['h'] = F.arange(0, sg.number_of_nodes())
    sg.edata['h'] = F.arange(0, sg.number_of_edges())

40
def test_subgraph():
Minjie Wang's avatar
Minjie Wang committed
41
    g = generate_graph()
42
43
    h = g.ndata['h']
    l = g.edata['l']
Minjie Wang's avatar
Minjie Wang committed
44
45
    nid = [0, 2, 3, 6, 7, 9]
    sg = g.subgraph(nid)
46
    eid = {2, 3, 4, 5, 10, 11, 12, 13, 16}
47
48
    assert set(F.asnumpy(sg.edata[dgl.EID])) == eid
    eid = sg.edata[dgl.EID]
49
50
51
    # the subgraph is empty initially except for NID/EID field
    assert len(sg.ndata) == 2
    assert len(sg.edata) == 2
52
    sh = sg.ndata['h']
VoVAllen's avatar
VoVAllen committed
53
    assert F.allclose(F.gather_row(h, F.tensor(nid)), sh)
Minjie Wang's avatar
Minjie Wang committed
54
55
56
57
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
Minjie Wang's avatar
Minjie Wang committed
58
59
60
61
    0, 2, 2    1
    2, 9, 3    1
    0, 3, 4    1
    3, 9, 5    1
Minjie Wang's avatar
Minjie Wang committed
62
63
64
    0, 4, 6
    4, 9, 7
    0, 5, 8
Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
    5, 9, 9       3
    0, 6, 10   1
    6, 9, 11   1  3
    0, 7, 12   1
    7, 9, 13   1  3
Minjie Wang's avatar
Minjie Wang committed
70
    0, 8, 14
Minjie Wang's avatar
Minjie Wang committed
71
72
    8, 9, 15      3
    9, 0, 16   1
Minjie Wang's avatar
Minjie Wang committed
73
    '''
74
    assert F.allclose(F.gather_row(l, eid), sg.edata['l'])
Minjie Wang's avatar
Minjie Wang committed
75
76
    # update the node/edge features on the subgraph should NOT
    # reflect to the parent graph.
77
78
    sg.ndata['h'] = F.zeros((6, D))
    assert F.allclose(h, g.ndata['h'])
Minjie Wang's avatar
Minjie Wang committed
79

80
81
def _test_map_to_subgraph():
    g = dgl.DGLGraph()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
82
83
84
85
86
    g.add_nodes(10)
    g.add_edges(F.arange(0, 9), F.arange(1, 10))
    h = g.subgraph([0, 1, 2, 5, 8])
    v = h.map_to_subgraph_nid([0, 8, 2])
    assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2]))
87
88
89
90
91
92
93
94
95
96

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

97
98
99
100
101
102
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
103
104
    for etype in g.etypes:
        g.edges[etype].data['weight'] = F.randn((g.num_edges(etype),))
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
    _check_subgraph(g, sg1)
145
146
147
148
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                           'plays': F.tensor([False, True, False, False], dtype=F.bool),
                           'wishes': F.tensor([False, True], dtype=F.bool)})
    _check_subgraph(g, sg2)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

@parametrize_dtype
def test_subgraph1(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], g.idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
184
185
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)
186
187
188
189
190

    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
    _check_subgraph(g, sg1)
191
192
193
194
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                           'plays': F.tensor([1], dtype=idtype),
                           'wishes': F.tensor([1], dtype=idtype)})
    _check_subgraph(g, sg2)
195
196
197
198
199

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
200
201
202
203
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], g.idtype))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], g.idtype))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
245
246
247
248
249
250
251
252
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    def _check_typed_subgraph1(g, sg):
        assert g.idtype == sg.idtype
        assert g.device == sg.device
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

    sg3 = g.node_type_subgraph(['user', 'game'])
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)

    # Test for restricted format
292
293
294
295
296
297
298
299
300
301
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph(([0, 1], [1, 2])).formats(fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))

302
303
@parametrize_dtype
def test_in_subgraph(idtype):
304
305
306
307
308
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
309
    }, idtype=idtype, num_nodes_dict={'user': 5, 'game': 10, 'coin': 8}).to(F.ctx())
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, store_ids=False)
    for etype in ['follow', 'play', 'liked-by']:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}

    assert subg.num_nodes('user') == 4
    assert subg.num_nodes('game') == 3
    assert subg.num_nodes('coin') == 0
    assert subg.num_edges('flips') == 0
368
369
370

@parametrize_dtype
def test_out_subgraph(idtype):
371
372
373
374
375
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
376
    }, idtype=idtype).to(F.ctx())
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0}, store_ids=False)
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.out_subgraph(hg, {'user': [1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])

    u, v = subg['flips'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['coin'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(old_u, old_v), subg['flips'].edata[dgl.EID])
    assert subg.num_nodes('user') == 2
    assert subg.num_nodes('game') == 2
    assert subg.num_nodes('coin') == 1
443
444
445
446
447
448
449

def test_subgraph_message_passing():
    # Unit test for PR #2055
    g = dgl.graph(([0, 1, 2], [2, 3, 4])).to(F.cpu())
    g.ndata['x'] = F.copy_to(F.randn((5, 6)), F.cpu())
    sg = g.subgraph([1, 2, 3]).to(F.ctx())
    sg.update_all(lambda edges: {'x': edges.src['x']}, lambda nodes: {'y': F.sum(nodes.mailbox['x'], 1)})
450
451
452
453
454
455
456
457
458
459
460

@parametrize_dtype
def test_khop_in_subgraph(idtype):
    g = dgl.graph(([1, 1, 2, 3, 4], [0, 2, 0, 4, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
461
    sg, inv = dgl.khop_in_subgraph(g, 0, k=2)
462
463
464
465
466
467
468
469
470
471
472
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0), (1,2), (2,0), (3,2)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 1, 2, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
473
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
474
475

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
476
    sg, inv = dgl.khop_in_subgraph(g, [0, 2], k=1)
477
478
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
479
    sg, inv = dgl.khop_in_subgraph(g, F.tensor([0, 2], idtype), k=1)
480
481
482
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
483
    sg, inv = dgl.khop_in_subgraph(g, 1, k=2)
484
485
486
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
487
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
488
489
490
491
492

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
493
    sg, inv = dgl.khop_in_subgraph(g, {'game': 0}, k=2)
494
495
496
497
498
499
500
501
502
503
504
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 1
    assert sg.num_nodes('user') == 2
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
505
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
506
507

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
508
    sg, inv = dgl.khop_in_subgraph(g, {'user': 0}, k=2)
509
510
511
512
513
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
514
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
515
516

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
517
    sg, inv = dgl.khop_in_subgraph(g, {'user': F.tensor([0, 1], idtype), 'game': 0}, k=1)
518
519
520
521
522
523
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
524
525
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0, 1], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
526
527
528
529
530
531
532
533
534
535
536

@parametrize_dtype
def test_khop_out_subgraph(idtype):
    g = dgl.graph(([0, 2, 0, 4, 2], [1, 1, 2, 3, 4]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
537
    sg, inv = dgl.khop_out_subgraph(g, 0, k=2)
538
539
540
541
542
543
544
545
546
547
548
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,1), (2,1), (0,2), (2,3)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 2, 1, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [4, 5],
        [2, 3],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
549
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
550
551

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
552
    sg, inv = dgl.khop_out_subgraph(g, [0, 2], k=1)
553
554
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
555
    sg, inv = dgl.khop_out_subgraph(g, F.tensor([0, 2], idtype), k=1)
556
557
558
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
559
    sg, inv = dgl.khop_out_subgraph(g, 1, k=2)
560
561
562
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
563
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
564
565
566
567
568

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1], [1, 3]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
569
    sg, inv = dgl.khop_out_subgraph(g, {'user': 0}, k=2)
570
571
572
573
574
575
576
577
578
579
580
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 2
    assert sg.num_nodes('user') == 3
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1), (1, 2)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0), (1,0), (1,1)}
Mufei Li's avatar
Mufei Li committed
581
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
582
583

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
584
    sg, inv = dgl.khop_out_subgraph(g, {'user': 3}, k=2)
585
586
587
588
589
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
590
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
591
592

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
593
    sg, inv = dgl.khop_out_subgraph(g, {'user': F.tensor([2], idtype), 'game': 0}, k=1)
594
595
596
597
    assert sg.num_edges('follows') == 0
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
Mufei Li's avatar
Mufei Li committed
598
599
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
@unittest.skipIf(not F.gpu_ctx(), 'only necessary with GPU')
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="UVA only supported for PyTorch")
@pytest.mark.parametrize(
    'parent_idx_device', [('cpu', F.cpu()), ('cuda', F.cuda()), ('uva', F.cpu()), ('uva', F.cuda())])
@pytest.mark.parametrize('child_device', [F.cpu(), F.cuda()])
def test_subframes(parent_idx_device, child_device):
    parent_device, idx_device = parent_idx_device
    g = dgl.graph((F.tensor([1,2,3], dtype=F.int64), F.tensor([2,3,4], dtype=F.int64)))
    print(g.device)
    g.ndata['x'] = F.randn((5, 4))
    g.edata['a'] = F.randn((3, 6))
    idx = F.tensor([1, 2], dtype=F.int64)
    if parent_device == 'cuda':
        g = g.to(F.cuda())
    elif parent_device == 'uva':
        g = g.to(F.cpu())
        g.create_formats_()
        g.pin_memory_()
    elif parent_device == 'cpu':
        g = g.to(F.cpu())
    idx = F.copy_to(idx, idx_device)
    sg = g.sample_neighbors(idx, 2).to(child_device)
    assert sg.device == sg.ndata['x'].device
    assert sg.device == sg.edata['a'].device
    assert sg.device == child_device
    if parent_device != 'uva':
        sg = g.to(child_device).sample_neighbors(F.copy_to(idx, child_device), 2)
        assert sg.device == sg.ndata['x'].device
        assert sg.device == sg.edata['a'].device
        assert sg.device == child_device
    if parent_device == 'uva':
        g.unpin_memory_()

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
@unittest.skipIf(F._default_context_str != "gpu", reason="UVA only available on GPU")
@pytest.mark.parametrize('device', [F.cpu(), F.cuda()])
@parametrize_dtype
def test_uva_subgraph(idtype, device):
    g = create_test_heterograph(idtype)
    g = g.to(F.cpu())
    g.create_formats_()
    g.pin_memory_()
    indices = {'user': F.copy_to(F.tensor([0], idtype), device)}
    edge_indices = {'follows': F.copy_to(F.tensor([0], idtype), device)}
    assert g.subgraph(indices).device == device
    assert g.edge_subgraph(edge_indices).device == device
    assert g.in_subgraph(indices).device == device
    assert g.out_subgraph(indices).device == device
    if dgl.backend.backend_name != 'tensorflow':
        # (BarclayII) Most of Tensorflow functions somehow do not preserve device: a CPU tensor
        # becomes a GPU tensor after operations such as concat(), unique() or even sin().
        # Not sure what should be the best fix.
        assert g.khop_in_subgraph(indices, 1)[0].device == device
        assert g.khop_out_subgraph(indices, 1)[0].device == device
    assert g.sample_neighbors(indices, 1).device == device
    g.unpin_memory_()

657
if __name__ == '__main__':
658
    test_uva_subgraph(F.int64, F.cpu())