test_dist_graph_store.py 30.8 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
12
from dgl.heterograph_index import create_unitgraph_from_coo
13
14
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
from numpy.testing import assert_almost_equal
17
import backend as F
18
import math
19
20
21
import unittest
import pickle

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

51
def create_random_graph(n):
52
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
53
    return dgl.from_scipy(arr)
54

55
def run_server(graph_name, server_id, server_count, num_clients, shared_mem):
56
    g = DistGraphServer(server_id, "kv_ip_config.txt", server_count, num_clients,
57
                        '/tmp/dist_graph/{}.json'.format(graph_name),
58
59
                        disable_shared_mem=not shared_mem,
                        graph_format=['csc', 'coo'])
60
61
62
    print('start server', server_id)
    g.start()

63
64
65
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

66
def rand_init(shape, dtype):
67
    return F.tensor(np.random.normal(size=shape), F.float32)
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def check_dist_graph_empty(g, num_clients, num_nodes, num_edges):
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.ndata['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
    del test3

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert g.node_attr_schemes()['test1'].dtype == F.int32

    print('end')

def run_client_empty(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    time.sleep(5)
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_empty(g, num_clients, num_nodes, num_edges)

def check_server_client_empty(shared_mem, num_servers, num_clients):
    prepare_dist()
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_1'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_empty, args=(graph_name, 0, num_servers, num_clients,
                                                       g.number_of_nodes(), g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

142
def run_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
143
    time.sleep(5)
144
145
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
146
147
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
148
    g = DistGraph(graph_name, gpb=gpb)
149
    check_dist_graph(g, num_clients, num_nodes, num_edges)
150

151
152
153
154
155
156
157
158
159
def run_emb_client(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    time.sleep(5)
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_emb(g, num_clients, num_nodes, num_edges)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
def run_client_hierarchy(graph_name, part_id, server_count, node_mask, edge_mask, return_dict):
    time.sleep(5)
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    node_mask = F.tensor(node_mask)
    edge_mask = F.tensor(edge_mask)
    nodes = node_split(node_mask, g.get_partition_book(), node_trainer_ids=g.ndata['trainer_id'])
    edges = edge_split(edge_mask, g.get_partition_book(), edge_trainer_ids=g.edata['trainer_id'])
    rank = g.rank()
    return_dict[rank] = (nodes, edges)

174
175
def check_dist_emb(g, num_clients, num_nodes, num_edges):
    from dgl.distributed.optim import SparseAdagrad
176
    from dgl.distributed import DistEmbedding
177
178
    # Test sparse emb
    try:
179
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb1', emb_init)
180
        nids = F.arange(0, int(g.number_of_nodes()))
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
197
        grad_sum = dgl.distributed.DistTensor((g.number_of_nodes(), 1), F.float32,
198
199
200
201
202
                                              'emb1_sum', policy)
        if num_clients == 1:
            assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)) * num_clients)
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

203
        emb = DistEmbedding(g.number_of_nodes(), 1, 'emb2', emb_init)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        with F.no_grad():
            feats1 = emb(nids)
        assert np.all(F.asnumpy(feats1) == 0)

        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        with F.no_grad():
            feats = emb(nids)
        if num_clients == 1:
220
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * 1 * -lr)
221
222
223
224
225
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass
226
227
228
    except Exception as e:
        print(e)
        sys.exit(-1)
229

230
def check_dist_graph(g, num_clients, num_nodes, num_edges):
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
249
250
    test1 = dgl.distributed.DistTensor(new_shape, F.int32)
    g.ndata['test1'] = test1
251
252
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)
253
    assert test1.count_nonzero() == 0
254

255
    # reference to a one that exists
256
257
    test2 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test2')
258
259
260
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
261
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
262
    del test3
263
    test3 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test3')
264
265
    del test3

Da Zheng's avatar
Da Zheng committed
266
267
268
269
270
271
272
273
    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

274
    # test a persistent tesnor
275
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
276
277
278
                                       persistent=True)
    del test4
    try:
279
        test4 = dgl.distributed.DistTensor((g.number_of_nodes(), 3), F.float32, 'test4')
280
281
282
        raise Exception('')
    except:
        pass
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

298
299
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
300
    nodes = node_split(selected_nodes, g.get_partition_book())
301
302
303
304
305
306
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

307
308
    print('end')

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def check_dist_emb_server_client(shared_mem, num_servers, num_clients):
    prepare_dist()
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_2'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_emb_client, args=(graph_name, 0, num_servers, num_clients,
                                                     g.number_of_nodes(),
                                                     g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
341
        assert p.exitcode == 0
342
343
344
345
346
347

    for p in serv_ps:
        p.join()

    print('clients have terminated')

348
def check_server_client(shared_mem, num_servers, num_clients):
349
    prepare_dist()
350
351
352
353
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
354
    graph_name = 'dist_graph_test_2'
355
356
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
357
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
358
359
360
361

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
362
    ctx = mp.get_context('spawn')
363
    for serv_id in range(num_servers):
364
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
365
                                                 num_clients, shared_mem))
366
367
368
369
        serv_ps.append(p)
        p.start()

    cli_ps = []
370
    for cli_id in range(num_clients):
371
        print('start client', cli_id)
372
        p = ctx.Process(target=run_client, args=(graph_name, 0, num_servers, num_clients, g.number_of_nodes(),
373
                                                 g.number_of_edges()))
374
375
376
377
378
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
379
380
381
382

    for p in serv_ps:
        p.join()

383
384
    print('clients have terminated')

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
def check_server_client_hierarchy(shared_mem, num_servers, num_clients):
    prepare_dist()
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_2'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph', num_trainers_per_machine=num_clients)

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    manager = mp.Manager()
    return_dict = manager.dict()
    node_mask = np.zeros((g.number_of_nodes(),), np.int32)
    edge_mask = np.zeros((g.number_of_edges(),), np.int32)
    nodes = np.random.choice(g.number_of_nodes(), g.number_of_nodes() // 10, replace=False)
    edges = np.random.choice(g.number_of_edges(), g.number_of_edges() // 10, replace=False)
    node_mask[nodes] = 1
    edge_mask[edges] = 1
    nodes = np.sort(nodes)
    edges = np.sort(edges)
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hierarchy, args=(graph_name, 0, num_servers,
                                                           node_mask, edge_mask, return_dict))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
    for p in serv_ps:
        p.join()

    nodes1 = []
    edges1 = []
    for n, e in return_dict.values():
        nodes1.append(n)
        edges1.append(e)
    nodes1, _ = F.sort_1d(F.cat(nodes1, 0))
    edges1, _ = F.sort_1d(F.cat(edges1, 0))
    assert np.all(F.asnumpy(nodes1) == nodes)
    assert np.all(F.asnumpy(edges1) == edges)

    print('clients have terminated')

441
442
443

def run_client_hetero(graph_name, part_id, server_count, num_clients, num_nodes, num_edges):
    time.sleep(5)
444
445
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("kv_ip_config.txt")
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    check_dist_graph_hetero(g, num_clients, num_nodes, num_edges)

def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

def check_dist_graph_hetero(g, num_clients, num_nodes, num_edges):
    # Test API
    for ntype in num_nodes:
        assert ntype in g.ntypes
        assert num_nodes[ntype] == g.number_of_nodes(ntype)
    for etype in num_edges:
        assert etype in g.etypes
        assert num_edges[etype] == g.number_of_edges(etype)
475
476
477
478
479
480
481
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    for i, etype in enumerate(g.canonical_etypes):
        assert etype[0] == etypes[i][0]
        assert etype[1] == etypes[i][1]
        assert etype[2] == etypes[i][2]
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    assert g.number_of_nodes() == sum([num_nodes[ntype] for ntype in num_nodes])
    assert g.number_of_edges() == sum([num_edges[etype] for etype in num_edges])

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes('n1') / 2))
    feats1 = g.nodes['n1'].data['feat'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges('r1') / 2))
    feats1 = g.edges['r1'].data['feat'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes('n1'), 2)
    g.nodes['n1'].data['test1'] = dgl.distributed.DistTensor(new_shape, F.int32)
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test3')
    del test3

    # add tests for anonymous distributed tensor.
    test3 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    data = test3[0:10]
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    del test3
    test5 = dgl.distributed.DistTensor(new_shape, F.float32, init_func=rand_init)
    assert np.sum(F.asnumpy(test5[0:10] != data)) > 0

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor((g.number_of_nodes('n1'), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.nodes['n1'].data['test1'][nids] = new_feats
    feats = g.nodes['n1'].data['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.nodes['n1'].data['feat']) == g.number_of_nodes('n1')
    assert g.nodes['n1'].data['feat'].shape == (g.number_of_nodes('n1'), 1)
    assert g.nodes['n1'].data['feat'].dtype == F.int64

    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes('n1')) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), ntype='n1')
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes('n1'))
    for n in nodes:
        assert n in local_nids

    print('end')

def check_server_client_hetero(shared_mem, num_servers, num_clients):
    prepare_dist()
    g = create_random_hetero()

    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    num_nodes = {ntype: g.number_of_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype: g.number_of_edges(etype) for etype in g.etypes}
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client_hetero, args=(graph_name, 0, num_servers, num_clients, num_nodes,
                                                        num_edges))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

    print('clients have terminated')

586
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
587
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
588
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
589
def test_server_client():
590
    os.environ['DGL_DIST_MODE'] = 'distributed'
591
    check_server_client_hierarchy(False, 1, 4)
592
    check_server_client_empty(True, 1, 1)
593
594
    check_server_client_hetero(True, 1, 1)
    check_server_client_hetero(False, 1, 1)
595
596
597
    check_server_client(True, 1, 1)
    check_server_client(False, 1, 1)
    check_server_client(True, 2, 2)
598

599
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
600
601
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
602
603
604
605
606
607
def test_dist_emb_server_client():
    os.environ['DGL_DIST_MODE'] = 'distributed'
    check_dist_emb_server_client(True, 1, 1)
    check_dist_emb_server_client(False, 1, 1)
    check_dist_emb_server_client(True, 2, 2)

608
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
609
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
610
611
def test_standalone():
    os.environ['DGL_DIST_MODE'] = 'standalone'
Da Zheng's avatar
Da Zheng committed
612

613
614
615
616
617
618
619
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
620
621

    dgl.distributed.initialize("kv_ip_config.txt")
622
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
623
    check_dist_graph(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
624
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
625

626
627
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support distributed DistEmbedding")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Mxnet doesn't support distributed DistEmbedding")
628
629
630
631
632
633
634
635
636
637
638
639
640
def test_standalone_node_emb():
    os.environ['DGL_DIST_MODE'] = 'standalone'

    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    dgl.distributed.initialize("kv_ip_config.txt")
    dist_g = DistGraph(graph_name, part_config='/tmp/dist_graph/{}.json'.format(graph_name))
641
    check_dist_emb(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
642
643
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

644
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
645
def test_split():
646
    #prepare_dist()
647
648
649
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
650
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
651
652
653
654
655

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
Da Zheng's avatar
Da Zheng committed
656
657
658
659
660
661
662
663
664

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

665
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
666
        set_roles(num_parts)
667
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
668
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
669
670
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
671
        nodes2 = node_split(node_mask, gpb, rank=i, force_even=False)
672
673
674
675
676
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

Da Zheng's avatar
Da Zheng committed
677
        set_roles(num_parts * 2)
678
679
        nodes3 = node_split(node_mask, gpb, rank=i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=False)
680
681
682
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

Da Zheng's avatar
Da Zheng committed
683
        set_roles(num_parts)
Da Zheng's avatar
Da Zheng committed
684
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
685
686
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
687
        edges2 = edge_split(edge_mask, gpb, rank=i, force_even=False)
688
689
690
691
692
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

Da Zheng's avatar
Da Zheng committed
693
        set_roles(num_parts * 2)
694
695
        edges3 = edge_split(edge_mask, gpb, rank=i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=False)
696
697
698
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

699
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
700
def test_split_even():
701
    #prepare_dist(1)
702
703
704
705
706
707
708
709
710
711
712
713
714
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
Da Zheng's avatar
Da Zheng committed
715
716
717
718
719
720
721
722
723

    # The code now collects the roles of all client processes and use the information
    # to determine how to split the workloads. Here is to simulate the multi-client
    # use case.
    def set_roles(num_clients):
        dgl.distributed.role.CUR_ROLE = 'default'
        dgl.distributed.role.GLOBAL_RANK = {i:i for i in range(num_clients)}
        dgl.distributed.role.PER_ROLE_RANK['default'] = {i:i for i in range(num_clients)}

724
    for i in range(num_parts):
Da Zheng's avatar
Da Zheng committed
725
        set_roles(num_parts)
726
        part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
727
728
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
729
        nodes = node_split(node_mask, gpb, rank=i, force_even=True)
730
731
732
733
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

Da Zheng's avatar
Da Zheng committed
734
        set_roles(num_parts * 2)
735
736
737
        nodes1 = node_split(node_mask, gpb, rank=i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, rank=i * 2 + 1, force_even=True)
        nodes3, _ = F.sort_1d(F.cat([nodes1, nodes2], 0))
738
739
740
741
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

Da Zheng's avatar
Da Zheng committed
742
        set_roles(num_parts)
743
744
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
745
        edges = edge_split(edge_mask, gpb, rank=i, force_even=True)
746
747
748
749
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

Da Zheng's avatar
Da Zheng committed
750
        set_roles(num_parts * 2)
751
752
753
        edges1 = edge_split(edge_mask, gpb, rank=i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, rank=i * 2 + 1, force_even=True)
        edges3, _ = F.sort_1d(F.cat([edges1, edges2], 0))
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

768
def prepare_dist():
769
    ip_config = open("kv_ip_config.txt", "w")
770
    ip_addr = get_local_usable_addr()
771
    ip_config.write('{}\n'.format(ip_addr))
772
773
    ip_config.close()

774
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
775
    os.makedirs('/tmp/dist_graph', exist_ok=True)
776
    test_dist_emb_server_client()
777
    test_server_client()
778
779
    test_split()
    test_split_even()
780
    test_standalone()
781
    test_standalone_node_emb()