test_nodeflow.py 17.3 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
import backend as F
import numpy as np
import scipy as sp
import dgl
5
from dgl.contrib.sampling.sampler import create_full_nodeflow, NeighborSampler
Da Zheng's avatar
Da Zheng committed
6
7
8
from dgl import utils
import dgl.function as fn
from functools import partial
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import itertools


def generate_rand_graph(n, connect_more=False, complete=False):
    if complete:
        cord = [(i,j) for i, j in itertools.product(range(n), range(n)) if i != j]
        row = [t[0] for t in cord]
        col = [t[1] for t in cord]
        data = np.ones((len(row),))
        arr = sp.sparse.coo_matrix((data, (row, col)), shape=(n, n))
    else:
        arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
        # having one node to connect to all other nodes.
        if connect_more:
            arr[0] = 1
            arr[:,0] = 1
Da Zheng's avatar
Da Zheng committed
25
26
27
28
29
30
    g = dgl.DGLGraph(arr, readonly=True)
    g.ndata['h1'] = F.randn((g.number_of_nodes(), 10))
    g.edata['h2'] = F.randn((g.number_of_edges(), 3))
    return g


31
32
33
34
35
36
37
def test_self_loop():
    n = 100
    num_hops = 2
    g = generate_rand_graph(n, complete=True)
    nf = create_mini_batch(g, num_hops, add_self_loop=True)
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
38
        deg = F.copy_to(F.ones(in_deg.shape, dtype=F.int64), F.cpu()) * n
39
40
41
        assert F.array_equal(in_deg, deg)

def create_mini_batch(g, num_hops, add_self_loop=False):
Da Zheng's avatar
Da Zheng committed
42
    seed_ids = np.array([0, 1, 2, 3])
43
44
45
46
47
    sampler = NeighborSampler(g, batch_size=4, expand_factor=g.number_of_nodes(),
            num_hops=num_hops, seed_nodes=seed_ids, add_self_loop=add_self_loop)
    nfs = list(sampler)
    assert len(nfs) == 1
    return nfs[0]
Da Zheng's avatar
Da Zheng committed
48
49
50
51
52
53
54
55
56
57
58
59

def check_basic(g, nf):
    num_nodes = 0
    for i in range(nf.num_layers):
        num_nodes += nf.layer_size(i)
    assert nf.number_of_nodes() == num_nodes
    num_edges = 0
    for i in range(nf.num_blocks):
        num_edges += nf.block_size(i)
    assert nf.number_of_edges() == num_edges

    deg = nf.layer_in_degree(0)
60
    assert F.array_equal(deg, F.copy_to(F.zeros((nf.layer_size(0)), F.int64), F.cpu()))
Da Zheng's avatar
Da Zheng committed
61
    deg = nf.layer_out_degree(-1)
62
    assert F.array_equal(deg, F.copy_to(F.zeros((nf.layer_size(-1)), F.int64), F.cpu()))
Da Zheng's avatar
Da Zheng committed
63
64
65
66
67
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
        out_deg = nf.layer_out_degree(i - 1)
        assert F.asnumpy(F.sum(in_deg, 0) == F.sum(out_deg, 0))

68
69
70
71
72
73
    # negative layer Ids.
    for i in range(-1, -nf.num_layers, -1):
        in_deg = nf.layer_in_degree(i)
        out_deg = nf.layer_out_degree(i - 1)
        assert F.asnumpy(F.sum(in_deg, 0) == F.sum(out_deg, 0))

Da Zheng's avatar
Da Zheng committed
74
75
76
77

def test_basic():
    num_layers = 2
    g = generate_rand_graph(100, connect_more=True)
78
    nf = create_full_nodeflow(g, num_layers)
Da Zheng's avatar
Da Zheng committed
79
80
81
82
83
84
85
    assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1)
    assert nf.number_of_edges() == g.number_of_edges() * num_layers
    assert nf.num_layers == num_layers + 1
    assert nf.layer_size(0) == g.number_of_nodes()
    assert nf.layer_size(1) == g.number_of_nodes()
    check_basic(g, nf)

86
    parent_nids = F.copy_to(F.arange(0, g.number_of_nodes()), F.cpu())
87
    nids = nf.map_from_parent_nid(0, parent_nids)
Da Zheng's avatar
Da Zheng committed
88
89
    assert F.array_equal(nids, parent_nids)

90
91
92
93
94
95
    # should also work for negative layer ids
    for l in range(-1, -num_layers, -1):
        nids1 = nf.map_from_parent_nid(l, parent_nids)
        nids2 = nf.map_from_parent_nid(l + num_layers, parent_nids)
        assert F.array_equal(nids1, nids2)

Da Zheng's avatar
Da Zheng committed
96
97
98
99
100
101
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    check_basic(g, nf)


102
def check_apply_nodes(create_node_flow, use_negative_block_id):
Da Zheng's avatar
Da Zheng committed
103
104
    num_layers = 2
    for i in range(num_layers):
105
        l = -num_layers + i if use_negative_block_id else i
Da Zheng's avatar
Da Zheng committed
106
107
108
        g = generate_rand_graph(100)
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
109
        new_feats = F.randn((nf.layer_size(l), 5))
Da Zheng's avatar
Da Zheng committed
110
111
        def update_func(nodes):
            return {'h1' : new_feats}
112
113
        nf.apply_layer(l, update_func)
        assert F.array_equal(nf.layers[l].data['h1'], new_feats)
Da Zheng's avatar
Da Zheng committed
114
115
116
117

        new_feats = F.randn((4, 5))
        def update_func1(nodes):
            return {'h1' : new_feats}
118
119
        nf.apply_layer(l, update_func1, v=nf.layer_nid(l)[0:4])
        assert F.array_equal(nf.layers[l].data['h1'][0:4], new_feats)
Da Zheng's avatar
Da Zheng committed
120
121
122


def test_apply_nodes():
123
124
125
126
    check_apply_nodes(create_full_nodeflow, use_negative_block_id=False)
    check_apply_nodes(create_mini_batch, use_negative_block_id=False)
    check_apply_nodes(create_full_nodeflow, use_negative_block_id=True)
    check_apply_nodes(create_mini_batch, use_negative_block_id=True)
Da Zheng's avatar
Da Zheng committed
127
128
129
130
131
132


def check_apply_edges(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
133
        g.ndata["f"] = F.randn((100, 10))
Da Zheng's avatar
Da Zheng committed
134
135
136
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.block_size(i), 5))
137
138
139
140

        def update_func(edges):
            return {'h2': new_feats, "f2": edges.src["f"] + edges.dst["f"]}

Da Zheng's avatar
Da Zheng committed
141
142
143
        nf.apply_block(i, update_func)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

144
145
146
147
        # should also work for negative block ids
        nf.apply_block(-num_layers + i, update_func)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

148
149
        eids = nf.block_parent_eid(i)
        srcs, dsts = g.find_edges(eids)
150
        expected_f_sum = g.nodes[srcs].data["f"] + g.nodes[dsts].data["f"]
151
152
        assert F.array_equal(nf.blocks[i].data['f2'], expected_f_sum)

Da Zheng's avatar
Da Zheng committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def check_apply_edges1(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
        g.ndata["f"] = F.randn((100, 10))
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.block_size(i), 5))

        def update_func(edges):
            return {'h2': new_feats, "f2": edges.src["f"] + edges.dst["f"]}

        nf.register_apply_edge_func(update_func, i)
        nf.apply_block(i)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

        # should also work for negative block ids
        nf.register_apply_edge_func(update_func, -num_layers + i)
        nf.apply_block(-num_layers + i)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

        eids = nf.block_parent_eid(i)
        srcs, dsts = g.find_edges(eids)
        expected_f_sum = g.nodes[srcs].data["f"] + g.nodes[dsts].data["f"]
        #expected_f_sum = g.ndata["f"][srcs] + g.ndata["f"][dsts]
        assert F.array_equal(nf.blocks[i].data['f2'], expected_f_sum)


Da Zheng's avatar
Da Zheng committed
182
def test_apply_edges():
183
    check_apply_edges(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
184
    check_apply_edges(create_mini_batch)
185
    check_apply_edges1(create_mini_batch)
Da Zheng's avatar
Da Zheng committed
186
187


188
def check_flow_compute(create_node_flow, use_negative_block_id=False):
Da Zheng's avatar
Da Zheng committed
189
190
191
192
193
194
195
196
    num_layers = 2
    g = generate_rand_graph(100)
    nf = create_node_flow(g, num_layers)
    nf.copy_from_parent()
    g.ndata['h'] = g.ndata['h1']
    nf.layers[0].data['h'] = nf.layers[0].data['h1']
    # Test the computation on a layer at a time.
    for i in range(num_layers):
197
198
        l = -num_layers + i if use_negative_block_id else i
        nf.block_compute(l, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
Da Zheng's avatar
Da Zheng committed
199
200
201
                         lambda nodes: {'h' : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
202
        assert F.allclose(nf.layers[i + 1].data['h'], g.nodes[nf.layer_parent_nid(i + 1)].data['h'])
Da Zheng's avatar
Da Zheng committed
203
204
205
206

    # Test the computation when only a few nodes are active in a layer.
    g.ndata['h'] = g.ndata['h1']
    for i in range(num_layers):
207
        l = -num_layers + i if use_negative_block_id else i
Da Zheng's avatar
Da Zheng committed
208
        vs = nf.layer_nid(i+1)[0:4]
209
        nf.block_compute(l, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
Da Zheng's avatar
Da Zheng committed
210
211
212
213
                        lambda nodes: {'h' : nodes.data['t'] + 1}, v=vs)
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        data1 = nf.layers[i + 1].data['h'][0:4]
214
215
        data2 = g.nodes[nf.map_to_parent_nid(vs)].data['h']
        assert F.allclose(data1, data2)
Da Zheng's avatar
Da Zheng committed
216
217


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
def check_flow_compute1(create_node_flow, use_negative_block_id=False):
    num_layers = 2
    g = generate_rand_graph(100)

    # test the case that we register UDFs per block.
    nf = create_node_flow(g, num_layers)
    nf.copy_from_parent()
    g.ndata['h'] = g.ndata['h1']
    nf.layers[0].data['h'] = nf.layers[0].data['h1']
    for i in range(num_layers):
        l = -num_layers + i if use_negative_block_id else i
        nf.register_message_func(fn.copy_src(src='h', out='m'), l)
        nf.register_reduce_func(fn.sum(msg='m', out='t'), l)
        nf.register_apply_node_func(lambda nodes: {'h' : nodes.data['t'] + 1}, l)
        nf.block_compute(l)
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.allclose(nf.layers[i + 1].data['h'], g.nodes[nf.layer_parent_nid(i + 1)].data['h'])

    # test the case that we register UDFs in all blocks.
    nf = create_node_flow(g, num_layers)
    nf.copy_from_parent()
    g.ndata['h'] = g.ndata['h1']
    nf.layers[0].data['h'] = nf.layers[0].data['h1']
    nf.register_message_func(fn.copy_src(src='h', out='m'))
    nf.register_reduce_func(fn.sum(msg='m', out='t'))
    nf.register_apply_node_func(lambda nodes: {'h' : nodes.data['t'] + 1})
    for i in range(num_layers):
        l = -num_layers + i if use_negative_block_id else i
        nf.block_compute(l)
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.allclose(nf.layers[i + 1].data['h'], g.nodes[nf.layer_parent_nid(i + 1)].data['h'])


Da Zheng's avatar
Da Zheng committed
253
def test_flow_compute():
254
    check_flow_compute(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
255
    check_flow_compute(create_mini_batch)
256
257
    check_flow_compute(create_full_nodeflow, use_negative_block_id=True)
    check_flow_compute(create_mini_batch, use_negative_block_id=True)
258
259
    check_flow_compute1(create_mini_batch)
    check_flow_compute1(create_mini_batch, use_negative_block_id=True)
Da Zheng's avatar
Da Zheng committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275


def check_prop_flows(create_node_flow):
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf2 = create_node_flow(g, num_layers)
    nf2.copy_from_parent()
    # Test the computation on a layer at a time.
    for i in range(num_layers):
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})

    # Test the computation on all layers.
    nf2.prop_flow(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                  lambda nodes: {'h' : nodes.data['t'] + 1})
276
    assert F.allclose(nf2.layers[-1].data['h'], g.nodes[nf2.layer_parent_nid(-1)].data['h'])
Da Zheng's avatar
Da Zheng committed
277
278
279


def test_prop_flows():
280
    check_prop_flows(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
281
282
283
284
285
286
287
288
289
290
291
292
293
    check_prop_flows(create_mini_batch)


def test_copy():
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf = create_mini_batch(g, num_layers)
    nf.copy_from_parent()
    for i in range(nf.num_layers):
        assert len(g.ndata.keys()) == len(nf.layers[i].data.keys())
        for key in g.ndata.keys():
            assert key in nf.layers[i].data.keys()
294
            assert F.array_equal(nf.layers[i].data[key], g.nodes[nf.layer_parent_nid(i)].data[key])
Da Zheng's avatar
Da Zheng committed
295
296
297
298
    for i in range(nf.num_blocks):
        assert len(g.edata.keys()) == len(nf.blocks[i].data.keys())
        for key in g.edata.keys():
            assert key in nf.blocks[i].data.keys()
299
            assert F.array_equal(nf.blocks[i].data[key], g.edges[nf.block_parent_eid(i)].data[key])
Da Zheng's avatar
Da Zheng committed
300
301
302
303
304
305
306
307
308

    nf = create_mini_batch(g, num_layers)
    node_embed_names = [['h'], ['h1'], ['h']]
    edge_embed_names = [['h2'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=edge_embed_names)
    for i in range(nf.num_layers):
        assert len(node_embed_names[i]) == len(nf.layers[i].data.keys())
        for key in node_embed_names[i]:
            assert key in nf.layers[i].data.keys()
309
            assert F.array_equal(nf.layers[i].data[key], g.nodes[nf.layer_parent_nid(i)].data[key])
Da Zheng's avatar
Da Zheng committed
310
311
312
313
    for i in range(nf.num_blocks):
        assert len(edge_embed_names[i]) == len(nf.blocks[i].data.keys())
        for key in edge_embed_names[i]:
            assert key in nf.blocks[i].data.keys()
314
            assert F.array_equal(nf.blocks[i].data[key], g.edges[nf.block_parent_eid(i)].data[key])
Da Zheng's avatar
Da Zheng committed
315
316
317
318
319
320
321
322
323
324

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], [], []]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)
    for i in range(num_layers):
        nf.block_compute(i, fn.copy_src(src='h%d' % i, out='m'), fn.sum(msg='m', out='t'),
                         lambda nodes: {'h%d' % (i+1) : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
325
326
        assert F.allclose(nf.layers[i + 1].data['h%d' % (i+1)],
                          g.nodes[nf.layer_parent_nid(i + 1)].data['h'])
Da Zheng's avatar
Da Zheng committed
327
328
329
    nf.copy_to_parent(node_embed_names=[['h0'], ['h1'], ['h2']])
    for i in range(num_layers + 1):
        assert F.array_equal(nf.layers[i].data['h%d' % i],
330
                             g.nodes[nf.layer_parent_nid(i)].data['h%d' % i])
Da Zheng's avatar
Da Zheng committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    g.ndata['h1'] = F.clone(g.ndata['h'])
    g.ndata['h2'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], ['h1'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)

    def msg_func(edge, ind):
        assert 'h%d' % ind in edge.src.keys()
        return {'m' : edge.src['h%d' % ind]}
    def reduce_func(node, ind):
        assert 'h%d' % (ind + 1) in node.data.keys()
        return {'h' : F.sum(node.mailbox['m'], 1) + node.data['h%d' % (ind + 1)]}

    for i in range(num_layers):
        nf.block_compute(i, partial(msg_func, ind=i), partial(reduce_func, ind=i))


350
def test_block_edges():
351
352
353
354
355
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
356
        src, dst, eid = nf.block_edges(i, remap=True)
357
358

        # should also work for negative block ids
359
        src_by_neg, dst_by_neg, eid_by_neg = nf.block_edges(-nf.num_blocks + i, remap=True)
360
361
362
363
        assert F.array_equal(src, src_by_neg)
        assert F.array_equal(dst, dst_by_neg)
        assert F.array_equal(eid, eid_by_neg)

364
365
366
367
368
369
370
        dest_nodes = utils.toindex(nf.layer_nid(i + 1))
        u, v, _ = nf._graph.in_edges(dest_nodes)
        u = nf._glb2lcl_nid(u.tousertensor(), i)
        v = nf._glb2lcl_nid(v.tousertensor(), i + 1)
        assert F.array_equal(src, u)
        assert F.array_equal(dst, v)

371
372
373
374
375
376
377

def test_block_adj_matrix():
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
378
        u, v, _ = nf.block_edges(i, remap=True)
379
380
        adj, _ = nf.block_adjacency_matrix(i, F.cpu())
        adj = F.sparse_to_numpy(adj)
381
382
383
384
385

        # should also work for negative block ids
        adj_by_neg, _ = nf.block_adjacency_matrix(-nf.num_blocks + i, F.cpu())
        adj_by_neg = F.sparse_to_numpy(adj_by_neg)

386
387
388
389
390
391
        data = np.ones((len(u)), dtype=np.float32)
        v = utils.toindex(v)
        u = utils.toindex(u)
        coo = sp.sparse.coo_matrix((data, (v.tonumpy(), u.tonumpy())),
                                   shape=adj.shape).todense()
        assert np.array_equal(adj, coo)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        assert np.array_equal(adj_by_neg, coo)


def test_block_incidence_matrix():
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
        typestrs = ["in", "out"] # todo need fix for "both"
        adjs = []
        for typestr in typestrs:
            adj, _ = nf.block_incidence_matrix(i, typestr, F.cpu())
            adj = F.sparse_to_numpy(adj)
            adjs.append(adj)

        # should work for negative block ids
        adjs_by_neg = []
        for typestr in typestrs:
            adj_by_neg, _ = nf.block_incidence_matrix(-nf.num_blocks + i, typestr, F.cpu())
            adj_by_neg = F.sparse_to_numpy(adj_by_neg)
            adjs_by_neg.append(adj_by_neg)

415
        u, v, e = nf.block_edges(i, remap=True)
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        u = utils.toindex(u)
        v = utils.toindex(v)
        e = utils.toindex(e)

        expected = []
        data_in_and_out = np.ones((len(u)), dtype=np.float32)
        expected.append(
            sp.sparse.coo_matrix((data_in_and_out, (v.tonumpy(), e.tonumpy())),
                                 shape=adjs[0].shape).todense()
        )
        expected.append(
            sp.sparse.coo_matrix((data_in_and_out, (u.tonumpy(), e.tonumpy())),
                                 shape=adjs[1].shape).todense()
        )
        for i in range(len(typestrs)):
            assert np.array_equal(adjs[i], expected[i])
            assert np.array_equal(adjs_by_neg[i], expected[i])
433
434


Da Zheng's avatar
Da Zheng committed
435
436
if __name__ == '__main__':
    test_basic()
437
    test_block_adj_matrix()
Da Zheng's avatar
Da Zheng committed
438
439
440
441
442
    test_copy()
    test_apply_nodes()
    test_apply_edges()
    test_flow_compute()
    test_prop_flows()
443
    test_self_loop()
444
    test_block_edges()
445
    test_block_incidence_matrix()