test_nodeflow.py 13.9 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
import backend as F
import numpy as np
import scipy as sp
import dgl
5
from dgl.contrib.sampling.sampler import create_full_nodeflow, NeighborSampler
Da Zheng's avatar
Da Zheng committed
6
7
8
from dgl import utils
import dgl.function as fn
from functools import partial
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import itertools


def generate_rand_graph(n, connect_more=False, complete=False):
    if complete:
        cord = [(i,j) for i, j in itertools.product(range(n), range(n)) if i != j]
        row = [t[0] for t in cord]
        col = [t[1] for t in cord]
        data = np.ones((len(row),))
        arr = sp.sparse.coo_matrix((data, (row, col)), shape=(n, n))
    else:
        arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
        # having one node to connect to all other nodes.
        if connect_more:
            arr[0] = 1
            arr[:,0] = 1
Da Zheng's avatar
Da Zheng committed
25
26
27
28
29
30
    g = dgl.DGLGraph(arr, readonly=True)
    g.ndata['h1'] = F.randn((g.number_of_nodes(), 10))
    g.edata['h2'] = F.randn((g.number_of_edges(), 3))
    return g


31
32
33
34
35
36
37
38
39
40
41
def test_self_loop():
    n = 100
    num_hops = 2
    g = generate_rand_graph(n, complete=True)
    nf = create_mini_batch(g, num_hops, add_self_loop=True)
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
        deg = F.ones(in_deg.shape, dtype=F.int64) * n
        assert F.array_equal(in_deg, deg)

def create_mini_batch(g, num_hops, add_self_loop=False):
Da Zheng's avatar
Da Zheng committed
42
    seed_ids = np.array([0, 1, 2, 3])
43
44
45
46
47
    sampler = NeighborSampler(g, batch_size=4, expand_factor=g.number_of_nodes(),
            num_hops=num_hops, seed_nodes=seed_ids, add_self_loop=add_self_loop)
    nfs = list(sampler)
    assert len(nfs) == 1
    return nfs[0]
Da Zheng's avatar
Da Zheng committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

def check_basic(g, nf):
    num_nodes = 0
    for i in range(nf.num_layers):
        num_nodes += nf.layer_size(i)
    assert nf.number_of_nodes() == num_nodes
    num_edges = 0
    for i in range(nf.num_blocks):
        num_edges += nf.block_size(i)
    assert nf.number_of_edges() == num_edges

    deg = nf.layer_in_degree(0)
    assert F.array_equal(deg, F.zeros((nf.layer_size(0)), F.int64))
    deg = nf.layer_out_degree(-1)
    assert F.array_equal(deg, F.zeros((nf.layer_size(-1)), F.int64))
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
        out_deg = nf.layer_out_degree(i - 1)
        assert F.asnumpy(F.sum(in_deg, 0) == F.sum(out_deg, 0))


def test_basic():
    num_layers = 2
    g = generate_rand_graph(100, connect_more=True)
72
    nf = create_full_nodeflow(g, num_layers)
Da Zheng's avatar
Da Zheng committed
73
74
75
76
77
78
79
80
    assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1)
    assert nf.number_of_edges() == g.number_of_edges() * num_layers
    assert nf.num_layers == num_layers + 1
    assert nf.layer_size(0) == g.number_of_nodes()
    assert nf.layer_size(1) == g.number_of_nodes()
    check_basic(g, nf)

    parent_nids = F.arange(0, g.number_of_nodes())
81
    nids = nf.map_from_parent_nid(0, parent_nids)
Da Zheng's avatar
Da Zheng committed
82
83
    assert F.array_equal(nids, parent_nids)

84
85
86
87
88
89
    # should also work for negative layer ids
    for l in range(-1, -num_layers, -1):
        nids1 = nf.map_from_parent_nid(l, parent_nids)
        nids2 = nf.map_from_parent_nid(l + num_layers, parent_nids)
        assert F.array_equal(nids1, nids2)

Da Zheng's avatar
Da Zheng committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    check_basic(g, nf)


def check_apply_nodes(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.layer_size(i), 5))
        def update_func(nodes):
            return {'h1' : new_feats}
        nf.apply_layer(i, update_func)
        assert F.array_equal(nf.layers[i].data['h1'], new_feats)

        new_feats = F.randn((4, 5))
        def update_func1(nodes):
            return {'h1' : new_feats}
        nf.apply_layer(i, update_func1, v=nf.layer_nid(i)[0:4])
        assert F.array_equal(nf.layers[i].data['h1'][0:4], new_feats)


def test_apply_nodes():
116
    check_apply_nodes(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
117
118
119
120
121
122
123
    check_apply_nodes(create_mini_batch)


def check_apply_edges(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
124
        g.ndata["f"] = F.randn((100, 10))
Da Zheng's avatar
Da Zheng committed
125
126
127
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.block_size(i), 5))
128
129
130
131

        def update_func(edges):
            return {'h2': new_feats, "f2": edges.src["f"] + edges.dst["f"]}

Da Zheng's avatar
Da Zheng committed
132
133
134
        nf.apply_block(i, update_func)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

135
136
137
138
        # should also work for negative block ids
        nf.apply_block(-num_layers + i, update_func)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)

139
140
141
142
143
        eids = nf.block_parent_eid(i)
        srcs, dsts = g.find_edges(eids)
        expected_f_sum = g.ndata["f"][srcs] + g.ndata["f"][dsts]
        assert F.array_equal(nf.blocks[i].data['f2'], expected_f_sum)

Da Zheng's avatar
Da Zheng committed
144
145

def test_apply_edges():
146
    check_apply_edges(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
147
148
149
    check_apply_edges(create_mini_batch)


150
def check_flow_compute(create_node_flow, use_negative_block_id=False):
Da Zheng's avatar
Da Zheng committed
151
152
153
154
155
156
157
158
    num_layers = 2
    g = generate_rand_graph(100)
    nf = create_node_flow(g, num_layers)
    nf.copy_from_parent()
    g.ndata['h'] = g.ndata['h1']
    nf.layers[0].data['h'] = nf.layers[0].data['h1']
    # Test the computation on a layer at a time.
    for i in range(num_layers):
159
160
        l = -num_layers + i if use_negative_block_id else i
        nf.block_compute(l, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
Da Zheng's avatar
Da Zheng committed
161
162
163
164
165
166
167
168
                         lambda nodes: {'h' : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.array_equal(nf.layers[i + 1].data['h'], g.ndata['h'][nf.layer_parent_nid(i + 1)])

    # Test the computation when only a few nodes are active in a layer.
    g.ndata['h'] = g.ndata['h1']
    for i in range(num_layers):
169
        l = -num_layers + i if use_negative_block_id else i
Da Zheng's avatar
Da Zheng committed
170
        vs = nf.layer_nid(i+1)[0:4]
171
        nf.block_compute(l, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
Da Zheng's avatar
Da Zheng committed
172
173
174
175
176
177
178
179
180
                        lambda nodes: {'h' : nodes.data['t'] + 1}, v=vs)
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        data1 = nf.layers[i + 1].data['h'][0:4]
        data2 = g.ndata['h'][nf.map_to_parent_nid(vs)]
        assert F.array_equal(data1, data2)


def test_flow_compute():
181
    check_flow_compute(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
182
    check_flow_compute(create_mini_batch)
183
184
    check_flow_compute(create_full_nodeflow, use_negative_block_id=True)
    check_flow_compute(create_mini_batch, use_negative_block_id=True)
Da Zheng's avatar
Da Zheng committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


def check_prop_flows(create_node_flow):
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf2 = create_node_flow(g, num_layers)
    nf2.copy_from_parent()
    # Test the computation on a layer at a time.
    for i in range(num_layers):
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})

    # Test the computation on all layers.
    nf2.prop_flow(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                  lambda nodes: {'h' : nodes.data['t'] + 1})
    assert F.array_equal(nf2.layers[-1].data['h'], g.ndata['h'][nf2.layer_parent_nid(-1)])


def test_prop_flows():
205
    check_prop_flows(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    check_prop_flows(create_mini_batch)


def test_copy():
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf = create_mini_batch(g, num_layers)
    nf.copy_from_parent()
    for i in range(nf.num_layers):
        assert len(g.ndata.keys()) == len(nf.layers[i].data.keys())
        for key in g.ndata.keys():
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key], g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(g.edata.keys()) == len(nf.blocks[i].data.keys())
        for key in g.edata.keys():
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key], g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    node_embed_names = [['h'], ['h1'], ['h']]
    edge_embed_names = [['h2'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=edge_embed_names)
    for i in range(nf.num_layers):
        assert len(node_embed_names[i]) == len(nf.layers[i].data.keys())
        for key in node_embed_names[i]:
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key], g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(edge_embed_names[i]) == len(nf.blocks[i].data.keys())
        for key in edge_embed_names[i]:
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key], g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], [], []]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)
    for i in range(num_layers):
        nf.block_compute(i, fn.copy_src(src='h%d' % i, out='m'), fn.sum(msg='m', out='t'),
                         lambda nodes: {'h%d' % (i+1) : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.array_equal(nf.layers[i + 1].data['h%d' % (i+1)],
                             g.ndata['h'][nf.layer_parent_nid(i + 1)])
    nf.copy_to_parent(node_embed_names=[['h0'], ['h1'], ['h2']])
    for i in range(num_layers + 1):
        assert F.array_equal(nf.layers[i].data['h%d' % i],
                             g.ndata['h%d' % i][nf.layer_parent_nid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    g.ndata['h1'] = F.clone(g.ndata['h'])
    g.ndata['h2'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], ['h1'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)

    def msg_func(edge, ind):
        assert 'h%d' % ind in edge.src.keys()
        return {'m' : edge.src['h%d' % ind]}
    def reduce_func(node, ind):
        assert 'h%d' % (ind + 1) in node.data.keys()
        return {'h' : F.sum(node.mailbox['m'], 1) + node.data['h%d' % (ind + 1)]}

    for i in range(num_layers):
        nf.block_compute(i, partial(msg_func, ind=i), partial(reduce_func, ind=i))


275
def test_block_edges():
276
277
278
279
280
281
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
        src, dst, eid = nf.block_edges(i)
282
283
284
285
286
287
288

        # should also work for negative block ids
        src_by_neg, dst_by_neg, eid_by_neg = nf.block_edges(-nf.num_blocks + i)
        assert F.array_equal(src, src_by_neg)
        assert F.array_equal(dst, dst_by_neg)
        assert F.array_equal(eid, eid_by_neg)

289
290
291
292
293
294
295
        dest_nodes = utils.toindex(nf.layer_nid(i + 1))
        u, v, _ = nf._graph.in_edges(dest_nodes)
        u = nf._glb2lcl_nid(u.tousertensor(), i)
        v = nf._glb2lcl_nid(v.tousertensor(), i + 1)
        assert F.array_equal(src, u)
        assert F.array_equal(dst, v)

296
297
298
299
300
301
302
303

def test_block_adj_matrix():
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
        u, v, _ = nf.block_edges(i)
304
305
        adj, _ = nf.block_adjacency_matrix(i, F.cpu())
        adj = F.sparse_to_numpy(adj)
306
307
308
309
310

        # should also work for negative block ids
        adj_by_neg, _ = nf.block_adjacency_matrix(-nf.num_blocks + i, F.cpu())
        adj_by_neg = F.sparse_to_numpy(adj_by_neg)

311
312
313
314
315
316
        data = np.ones((len(u)), dtype=np.float32)
        v = utils.toindex(v)
        u = utils.toindex(u)
        coo = sp.sparse.coo_matrix((data, (v.tonumpy(), u.tonumpy())),
                                   shape=adj.shape).todense()
        assert np.array_equal(adj, coo)
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        assert np.array_equal(adj_by_neg, coo)


def test_block_incidence_matrix():
    num_layers = 3
    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    for i in range(nf.num_blocks):
        typestrs = ["in", "out"] # todo need fix for "both"
        adjs = []
        for typestr in typestrs:
            adj, _ = nf.block_incidence_matrix(i, typestr, F.cpu())
            adj = F.sparse_to_numpy(adj)
            adjs.append(adj)

        # should work for negative block ids
        adjs_by_neg = []
        for typestr in typestrs:
            adj_by_neg, _ = nf.block_incidence_matrix(-nf.num_blocks + i, typestr, F.cpu())
            adj_by_neg = F.sparse_to_numpy(adj_by_neg)
            adjs_by_neg.append(adj_by_neg)

        u, v, e = nf.block_edges(i)
        u = utils.toindex(u)
        v = utils.toindex(v)
        e = utils.toindex(e)

        expected = []
        data_in_and_out = np.ones((len(u)), dtype=np.float32)
        expected.append(
            sp.sparse.coo_matrix((data_in_and_out, (v.tonumpy(), e.tonumpy())),
                                 shape=adjs[0].shape).todense()
        )
        expected.append(
            sp.sparse.coo_matrix((data_in_and_out, (u.tonumpy(), e.tonumpy())),
                                 shape=adjs[1].shape).todense()
        )
        for i in range(len(typestrs)):
            assert np.array_equal(adjs[i], expected[i])
            assert np.array_equal(adjs_by_neg[i], expected[i])
358
359


Da Zheng's avatar
Da Zheng committed
360
361
if __name__ == '__main__':
    test_basic()
362
    test_block_adj_matrix()
Da Zheng's avatar
Da Zheng committed
363
364
365
366
367
    test_copy()
    test_apply_nodes()
    test_apply_edges()
    test_flow_compute()
    test_prop_flows()
368
    test_self_loop()
369
370
    test_block_edges()
    test_block_incidence_matrix()