test_nodeflow.py 9.75 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
import backend as F
import numpy as np
import scipy as sp
import dgl
5
from dgl.contrib.sampling.sampler import create_full_nodeflow, NeighborSampler
Da Zheng's avatar
Da Zheng committed
6
7
8
from dgl import utils
import dgl.function as fn
from functools import partial
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import itertools


def generate_rand_graph(n, connect_more=False, complete=False):
    if complete:
        cord = [(i,j) for i, j in itertools.product(range(n), range(n)) if i != j]
        row = [t[0] for t in cord]
        col = [t[1] for t in cord]
        data = np.ones((len(row),))
        arr = sp.sparse.coo_matrix((data, (row, col)), shape=(n, n))
    else:
        arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
        # having one node to connect to all other nodes.
        if connect_more:
            arr[0] = 1
            arr[:,0] = 1
Da Zheng's avatar
Da Zheng committed
25
26
27
28
29
30
    g = dgl.DGLGraph(arr, readonly=True)
    g.ndata['h1'] = F.randn((g.number_of_nodes(), 10))
    g.edata['h2'] = F.randn((g.number_of_edges(), 3))
    return g


31
32
33
34
35
36
37
38
39
40
41
def test_self_loop():
    n = 100
    num_hops = 2
    g = generate_rand_graph(n, complete=True)
    nf = create_mini_batch(g, num_hops, add_self_loop=True)
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
        deg = F.ones(in_deg.shape, dtype=F.int64) * n
        assert F.array_equal(in_deg, deg)

def create_mini_batch(g, num_hops, add_self_loop=False):
Da Zheng's avatar
Da Zheng committed
42
    seed_ids = np.array([0, 1, 2, 3])
43
44
45
46
47
    sampler = NeighborSampler(g, batch_size=4, expand_factor=g.number_of_nodes(),
            num_hops=num_hops, seed_nodes=seed_ids, add_self_loop=add_self_loop)
    nfs = list(sampler)
    assert len(nfs) == 1
    return nfs[0]
Da Zheng's avatar
Da Zheng committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

def check_basic(g, nf):
    num_nodes = 0
    for i in range(nf.num_layers):
        num_nodes += nf.layer_size(i)
    assert nf.number_of_nodes() == num_nodes
    num_edges = 0
    for i in range(nf.num_blocks):
        num_edges += nf.block_size(i)
    assert nf.number_of_edges() == num_edges

    deg = nf.layer_in_degree(0)
    assert F.array_equal(deg, F.zeros((nf.layer_size(0)), F.int64))
    deg = nf.layer_out_degree(-1)
    assert F.array_equal(deg, F.zeros((nf.layer_size(-1)), F.int64))
    for i in range(1, nf.num_layers):
        in_deg = nf.layer_in_degree(i)
        out_deg = nf.layer_out_degree(i - 1)
        assert F.asnumpy(F.sum(in_deg, 0) == F.sum(out_deg, 0))


def test_basic():
    num_layers = 2
    g = generate_rand_graph(100, connect_more=True)
72
    nf = create_full_nodeflow(g, num_layers)
Da Zheng's avatar
Da Zheng committed
73
74
75
76
77
78
79
80
    assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1)
    assert nf.number_of_edges() == g.number_of_edges() * num_layers
    assert nf.num_layers == num_layers + 1
    assert nf.layer_size(0) == g.number_of_nodes()
    assert nf.layer_size(1) == g.number_of_nodes()
    check_basic(g, nf)

    parent_nids = F.arange(0, g.number_of_nodes())
81
    nids = nf.map_from_parent_nid(0, parent_nids)
Da Zheng's avatar
Da Zheng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    assert F.array_equal(nids, parent_nids)

    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    check_basic(g, nf)


def check_apply_nodes(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.layer_size(i), 5))
        def update_func(nodes):
            return {'h1' : new_feats}
        nf.apply_layer(i, update_func)
        assert F.array_equal(nf.layers[i].data['h1'], new_feats)

        new_feats = F.randn((4, 5))
        def update_func1(nodes):
            return {'h1' : new_feats}
        nf.apply_layer(i, update_func1, v=nf.layer_nid(i)[0:4])
        assert F.array_equal(nf.layers[i].data['h1'][0:4], new_feats)


def test_apply_nodes():
110
    check_apply_nodes(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    check_apply_nodes(create_mini_batch)


def check_apply_edges(create_node_flow):
    num_layers = 2
    for i in range(num_layers):
        g = generate_rand_graph(100)
        nf = create_node_flow(g, num_layers)
        nf.copy_from_parent()
        new_feats = F.randn((nf.block_size(i), 5))
        def update_func(nodes):
            return {'h2' : new_feats}
        nf.apply_block(i, update_func)
        assert F.array_equal(nf.blocks[i].data['h2'], new_feats)


def test_apply_edges():
128
    check_apply_edges(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    check_apply_edges(create_mini_batch)


def check_flow_compute(create_node_flow):
    num_layers = 2
    g = generate_rand_graph(100)
    nf = create_node_flow(g, num_layers)
    nf.copy_from_parent()
    g.ndata['h'] = g.ndata['h1']
    nf.layers[0].data['h'] = nf.layers[0].data['h1']
    # Test the computation on a layer at a time.
    for i in range(num_layers):
        nf.block_compute(i, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                         lambda nodes: {'h' : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.array_equal(nf.layers[i + 1].data['h'], g.ndata['h'][nf.layer_parent_nid(i + 1)])

    # Test the computation when only a few nodes are active in a layer.
    g.ndata['h'] = g.ndata['h1']
    for i in range(num_layers):
        vs = nf.layer_nid(i+1)[0:4]
        nf.block_compute(i, fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                        lambda nodes: {'h' : nodes.data['t'] + 1}, v=vs)
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        data1 = nf.layers[i + 1].data['h'][0:4]
        data2 = g.ndata['h'][nf.map_to_parent_nid(vs)]
        assert F.array_equal(data1, data2)


def test_flow_compute():
161
    check_flow_compute(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    check_flow_compute(create_mini_batch)


def check_prop_flows(create_node_flow):
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf2 = create_node_flow(g, num_layers)
    nf2.copy_from_parent()
    # Test the computation on a layer at a time.
    for i in range(num_layers):
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})

    # Test the computation on all layers.
    nf2.prop_flow(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                  lambda nodes: {'h' : nodes.data['t'] + 1})
    assert F.array_equal(nf2.layers[-1].data['h'], g.ndata['h'][nf2.layer_parent_nid(-1)])


def test_prop_flows():
183
    check_prop_flows(create_full_nodeflow)
Da Zheng's avatar
Da Zheng committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    check_prop_flows(create_mini_batch)


def test_copy():
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf = create_mini_batch(g, num_layers)
    nf.copy_from_parent()
    for i in range(nf.num_layers):
        assert len(g.ndata.keys()) == len(nf.layers[i].data.keys())
        for key in g.ndata.keys():
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key], g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(g.edata.keys()) == len(nf.blocks[i].data.keys())
        for key in g.edata.keys():
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key], g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    node_embed_names = [['h'], ['h1'], ['h']]
    edge_embed_names = [['h2'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=edge_embed_names)
    for i in range(nf.num_layers):
        assert len(node_embed_names[i]) == len(nf.layers[i].data.keys())
        for key in node_embed_names[i]:
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key], g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(edge_embed_names[i]) == len(nf.blocks[i].data.keys())
        for key in edge_embed_names[i]:
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key], g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], [], []]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)
    for i in range(num_layers):
        nf.block_compute(i, fn.copy_src(src='h%d' % i, out='m'), fn.sum(msg='m', out='t'),
                         lambda nodes: {'h%d' % (i+1) : nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h' : nodes.data['t'] + 1})
        assert F.array_equal(nf.layers[i + 1].data['h%d' % (i+1)],
                             g.ndata['h'][nf.layer_parent_nid(i + 1)])
    nf.copy_to_parent(node_embed_names=[['h0'], ['h1'], ['h2']])
    for i in range(num_layers + 1):
        assert F.array_equal(nf.layers[i].data['h%d' % i],
                             g.ndata['h%d' % i][nf.layer_parent_nid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    g.ndata['h1'] = F.clone(g.ndata['h'])
    g.ndata['h2'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], ['h1'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names, edge_embed_names=None)

    def msg_func(edge, ind):
        assert 'h%d' % ind in edge.src.keys()
        return {'m' : edge.src['h%d' % ind]}
    def reduce_func(node, ind):
        assert 'h%d' % (ind + 1) in node.data.keys()
        return {'h' : F.sum(node.mailbox['m'], 1) + node.data['h%d' % (ind + 1)]}

    for i in range(num_layers):
        nf.block_compute(i, partial(msg_func, ind=i), partial(reduce_func, ind=i))


if __name__ == '__main__':
    test_basic()
    test_copy()
    test_apply_nodes()
    test_apply_edges()
    test_flow_compute()
    test_prop_flows()
260
    test_self_loop()