"sgl-kernel/python/vscode:/vscode.git/clone" did not exist on "1ebec1a8b0f1bf381a023b1dbc28b54b5ffc50f2"
test_dataloader.py 16.2 KB
Newer Older
1
import os
2
import numpy as np
3
import dgl
4
import dgl.ops as OPS
5
6
import backend as F
import unittest
7
import torch
8
from functools import partial
9
10
from torch.utils.data import DataLoader
from collections import defaultdict
11
from collections.abc import Iterator, Mapping
12
from itertools import product
nv-dlasalle's avatar
nv-dlasalle committed
13
from test_utils import parametrize_idtype
14
import pytest
15
16


17
18
19
20
21
def test_graph_dataloader():
    batch_size = 16
    num_batches = 2
    minigc_dataset = dgl.data.MiniGCDataset(batch_size * num_batches, 10, 20)
    data_loader = dgl.dataloading.GraphDataLoader(minigc_dataset, batch_size=batch_size, shuffle=True)
22
    assert isinstance(iter(data_loader), Iterator)
23
24
25
    for graph, label in data_loader:
        assert isinstance(graph, dgl.DGLGraph)
        assert F.asnumpy(label).shape[0] == batch_size
26

27
28
29
30
31
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('num_workers', [0, 4])
def test_cluster_gcn(num_workers):
    dataset = dgl.data.CoraFullDataset()
    g = dataset[0]
32
33
34
35
36
37
    sampler = dgl.dataloading.ClusterGCNSampler(g, 100)
    dataloader = dgl.dataloading.DataLoader(
        g, torch.arange(100), sampler, batch_size=4, num_workers=num_workers)
    assert len(dataloader) == 25
    for i, sg in enumerate(dataloader):
        pass
38
39
40
41
42
43
44
45

@pytest.mark.parametrize('num_workers', [0, 4])
def test_shadow(num_workers):
    g = dgl.data.CoraFullDataset()[0]
    sampler = dgl.dataloading.ShaDowKHopSampler([5, 10, 15])
    dataloader = dgl.dataloading.NodeDataLoader(
        g, torch.arange(g.num_nodes()), sampler,
        batch_size=5, shuffle=True, drop_last=False, num_workers=num_workers)
46
    for i, (input_nodes, output_nodes, subgraph) in enumerate(dataloader):
47
48
49
50
51
52
53
        assert torch.equal(input_nodes, subgraph.ndata[dgl.NID])
        assert torch.equal(input_nodes[:output_nodes.shape[0]], output_nodes)
        assert torch.equal(subgraph.ndata['label'], g.ndata['label'][input_nodes])
        assert torch.equal(subgraph.ndata['feat'], g.ndata['feat'][input_nodes])
        if i == 5:
            break

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
@pytest.mark.parametrize('num_workers', [0, 4])
@pytest.mark.parametrize('mode', ['node', 'edge', 'walk'])
def test_saint(num_workers, mode):
    g = dgl.data.CoraFullDataset()[0]

    if mode == 'node':
        budget = 100
    elif mode == 'edge':
        budget = 200
    elif mode == 'walk':
        budget = (3, 2)

    sampler = dgl.dataloading.SAINTSampler(mode, budget)
    dataloader = dgl.dataloading.DataLoader(
        g, torch.arange(100), sampler, num_workers=num_workers)
    assert len(dataloader) == 100
    for sg in dataloader:
        pass
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

@pytest.mark.parametrize('num_workers', [0, 4])
def test_neighbor_nonuniform(num_workers):
    g = dgl.graph(([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]))
    g.edata['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(g, [0, 1], sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes.item()
        neighbors = set(input_nodes[1:].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

    g = dgl.heterograph({
        ('B', 'BA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        ('C', 'CA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        })
    g.edges['BA'].data['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    g.edges['CA'].data['p'] = torch.FloatTensor([0, 0, 1, 1, 0, 0, 1, 1])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(
        g, {'A': [0, 1]}, sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes['A'].item()
        # Seed and neighbors are of different node types so slicing is not necessary here.
        neighbors = set(input_nodes['B'].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

        neighbors = set(input_nodes['C'].cpu().numpy())
        if seed == 1:
            assert neighbors == {7, 8}
        elif seed == 0:
            assert neighbors == {3, 4}

111
112
113
114
115
116
117
118
119
def _check_dtype(data, dtype, attr_name):
    if isinstance(data, dict):
        for k, v in data.items():
            assert getattr(v, attr_name) == dtype
    elif isinstance(data, list):
        for v in data:
            assert getattr(v, attr_name) == dtype
    else:
        assert getattr(data, attr_name) == dtype
120

121
122
123
124
125
126
127
128
129
130
def _check_device(data):
    if isinstance(data, dict):
        for k, v in data.items():
            assert v.device == F.ctx()
    elif isinstance(data, list):
        for v in data:
            assert v.device == F.ctx()
    else:
        assert data.device == F.ctx()

nv-dlasalle's avatar
nv-dlasalle committed
131
@parametrize_idtype
132
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor', 'neighbor2'])
133
@pytest.mark.parametrize('pin_graph', [None, 'cuda_indices', 'cpu_indices'])
134
135
def test_node_dataloader(idtype, sampler_name, pin_graph):
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4])).astype(idtype)
Xin Yao's avatar
Xin Yao committed
136
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
137
    g1.ndata['label'] = F.copy_to(F.randn((g1.num_nodes(),)), F.cpu())
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    indices = F.arange(0, g1.num_nodes(), idtype)
    if F.ctx() != F.cpu():
        if pin_graph:
            g1.create_formats_()
            g1.pin_memory_()
            if pin_graph == 'cpu_indices':
                indices = F.arange(0, g1.num_nodes(), idtype, F.cpu())
            elif pin_graph == 'cuda_indices':
                if F._default_context_str == 'gpu':
                    indices = F.arange(0, g1.num_nodes(), idtype, F.cuda())
                else:
                    return  # skip
        else:
            g1 = g1.to('cuda')

    use_uva = pin_graph is not None and F.ctx() != F.cpu()
154

155
156
157
158
159
160
    for num_workers in [0, 1, 2]:
        sampler = {
            'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
            'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
            'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
        dataloader = dgl.dataloading.NodeDataLoader(
161
            g1, indices, sampler, device=F.ctx(),
162
            batch_size=g1.num_nodes(),
163
164
            num_workers=(num_workers if (pin_graph and F.ctx() == F.cpu()) else 0),
            use_uva=use_uva)
165
166
167
168
        for input_nodes, output_nodes, blocks in dataloader:
            _check_device(input_nodes)
            _check_device(output_nodes)
            _check_device(blocks)
169
170
171
            _check_dtype(input_nodes, idtype, 'dtype')
            _check_dtype(output_nodes, idtype, 'dtype')
            _check_dtype(blocks, idtype, 'idtype')
172
173
    if g1.is_pinned():
        g1.unpin_memory_()
174
175
176
177
178
179

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
180
    }).astype(idtype)
181
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
182
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    indices = {nty: F.arange(0, g2.num_nodes(nty)) for nty in g2.ntypes}
    if F.ctx() != F.cpu():
        if pin_graph:
            g2.create_formats_()
            g2.pin_memory_()
            if pin_graph == 'cpu_indices':
                indices = {nty: F.arange(0, g2.num_nodes(nty), idtype, F.cpu()) for nty in g2.ntypes}
            elif pin_graph == 'cuda_indices':
                if F._default_context_str == 'gpu':
                    indices = {nty: F.arange(0, g2.num_nodes(), idtype, F.cuda()) for nty in g2.ntypes}
                else:
                    return  # skip
        else:
            g2 = g2.to('cuda')

198
    batch_size = max(g2.num_nodes(nty) for nty in g2.ntypes)
199
200
201
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
202
        'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
203

204
205
    dataloader = dgl.dataloading.NodeDataLoader(
        g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
206
207
208
        sampler, device=F.ctx(), batch_size=batch_size,
        num_workers=(num_workers if (pin_graph and F.ctx() == F.cpu()) else 0),
        use_uva=use_uva)
209
210
211
212
213
    assert isinstance(iter(dataloader), Iterator)
    for input_nodes, output_nodes, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(blocks)
214
215
216
        _check_dtype(input_nodes, idtype, 'dtype')
        _check_dtype(output_nodes, idtype, 'dtype')
        _check_dtype(blocks, idtype, 'idtype')
217

218
219
    if g2.is_pinned():
        g2.unpin_memory_()
220

221
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor'])
222
223
224
225
@pytest.mark.parametrize('neg_sampler', [
    dgl.dataloading.negative_sampler.Uniform(2),
    dgl.dataloading.negative_sampler.GlobalUniform(15, False, 3),
    dgl.dataloading.negative_sampler.GlobalUniform(15, True, 3)])
226
@pytest.mark.parametrize('pin_graph', [False, True])
227
def test_edge_dataloader(sampler_name, neg_sampler, pin_graph):
Xin Yao's avatar
Xin Yao committed
228
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
229
230
231
    if F.ctx() != F.cpu() and pin_graph:
        g1.create_formats_()
        g1.pin_memory_()
Xin Yao's avatar
Xin Yao committed
232
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
233

234
235
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
236
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
237

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
238
    # no negative sampler
239
240
241
242
243
244
245
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(), batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
246
    # negative sampler
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(),
        negative_sampler=neg_sampler, batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
261
    })
262
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
263
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
264
    batch_size = max(g2.num_edges(ety) for ety in g2.canonical_etypes)
265
266
267
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
268
        }[sampler_name]
269

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
270
    # no negative sampler
271
272
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
273
274
        sampler, device=F.ctx(), batch_size=batch_size)
    for input_nodes, pos_pair_graph, blocks in dataloader:
275
276
277
278
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
279
    # negative sampler
280
281
282
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), negative_sampler=neg_sampler,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
283
        batch_size=batch_size)
284

285
    assert isinstance(iter(dataloader), Iterator)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
286
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
287
288
289
290
291
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

292
293
294
    if g1.is_pinned():
        g1.unpin_memory_()

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def _create_homogeneous():
    s = torch.randint(0, 200, (1000,), device=F.ctx())
    d = torch.randint(0, 200, (1000,), device=F.ctx())
    src = torch.cat([s, d])
    dst = torch.cat([d, s])
    g = dgl.graph((s, d), num_nodes=200)
    reverse_eids = torch.cat([torch.arange(1000, 2000), torch.arange(0, 1000)]).to(F.ctx())
    always_exclude = torch.randint(0, 1000, (50,), device=F.ctx())
    seed_edges = torch.arange(0, 1000, device=F.ctx())
    return g, reverse_eids, always_exclude, seed_edges

def _create_heterogeneous():
    edges = {}
    for utype, etype, vtype in [('A', 'AA', 'A'), ('A', 'AB', 'B')]:
        s = torch.randint(0, 200, (1000,), device=F.ctx())
        d = torch.randint(0, 200, (1000,), device=F.ctx())
        edges[utype, etype, vtype] = (s, d)
        edges[vtype, 'rev-' + etype, utype] = (d, s)
    g = dgl.heterograph(edges, num_nodes_dict={'A': 200, 'B': 200})
    reverse_etypes = {'AA': 'rev-AA', 'AB': 'rev-AB', 'rev-AA': 'AA', 'rev-AB': 'AB'}
    always_exclude = {
        'AA': torch.randint(0, 1000, (50,), device=F.ctx()),
        'AB': torch.randint(0, 1000, (50,), device=F.ctx())}
    seed_edges = {
        'AA': torch.arange(0, 1000, device=F.ctx()),
        'AB': torch.arange(0, 1000, device=F.ctx())}
    return g, reverse_etypes, always_exclude, seed_edges

def _find_edges_to_exclude(g, exclude, always_exclude, pair_eids):
    if exclude == None:
        return always_exclude
    elif exclude == 'self':
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_id':
        pair_eids = torch.cat([pair_eids, pair_eids + 1000])
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_types':
        pair_eids = {g.to_canonical_etype(k): v for k, v in pair_eids.items()}
        if ('A', 'AA', 'A') in pair_eids:
            pair_eids[('A', 'rev-AA', 'A')] = pair_eids[('A', 'AA', 'A')]
        if ('A', 'AB', 'B') in pair_eids:
            pair_eids[('B', 'rev-AB', 'A')] = pair_eids[('A', 'AB', 'B')]
        if always_exclude is not None:
            always_exclude = {g.to_canonical_etype(k): v for k, v in always_exclude.items()}
            for k in always_exclude.keys():
                if k in pair_eids:
                    pair_eids[k] = torch.cat([pair_eids[k], always_exclude[k]])
                else:
                    pair_eids[k] = always_exclude[k]
        return pair_eids

@pytest.mark.parametrize('always_exclude_flag', [False, True])
@pytest.mark.parametrize('exclude', [None, 'self', 'reverse_id', 'reverse_types'])
def test_edge_dataloader_excludes(exclude, always_exclude_flag):
    if exclude == 'reverse_types':
        g, reverse_etypes, always_exclude, seed_edges = _create_heterogeneous()
    else:
        g, reverse_eids, always_exclude, seed_edges = _create_homogeneous()
    g = g.to(F.ctx())
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
    if not always_exclude_flag:
        always_exclude = None

    kwargs = {}
    kwargs['exclude'] = (
        partial(_find_edges_to_exclude, g, exclude, always_exclude) if always_exclude_flag
        else exclude)
    kwargs['reverse_eids'] = reverse_eids if exclude == 'reverse_id' else None
    kwargs['reverse_etypes'] = reverse_etypes if exclude == 'reverse_types' else None

    dataloader = dgl.dataloading.EdgeDataLoader(
        g, seed_edges, sampler, batch_size=50, device=F.ctx(), **kwargs)
    for input_nodes, pair_graph, blocks in dataloader:
        block = blocks[0]
        pair_eids = pair_graph.edata[dgl.EID]
        block_eids = block.edata[dgl.EID]

        edges_to_exclude = _find_edges_to_exclude(g, exclude, always_exclude, pair_eids)
        if edges_to_exclude is None:
            continue
        edges_to_exclude = dgl.utils.recursive_apply(edges_to_exclude, lambda x: x.cpu().numpy())
        block_eids = dgl.utils.recursive_apply(block_eids, lambda x: x.cpu().numpy())

        if isinstance(edges_to_exclude, Mapping):
            for k in edges_to_exclude.keys():
                assert not np.isin(edges_to_exclude[k], block_eids[k]).any()
        else:
            assert not np.isin(edges_to_exclude, block_eids).any()

384
if __name__ == '__main__':
385
    test_node_dataloader(F.int32, 'neighbor', None)