test_dataloader.py 15.1 KB
Newer Older
1
import os
2
import numpy as np
3
import dgl
4
import dgl.ops as OPS
5
6
import backend as F
import unittest
7
import torch
8
from functools import partial
9
10
from torch.utils.data import DataLoader
from collections import defaultdict
11
from collections.abc import Iterator, Mapping
12
from itertools import product
13
from test_utils import parametrize_dtype
14
import pytest
15
16


17
18
19
20
21
def test_graph_dataloader():
    batch_size = 16
    num_batches = 2
    minigc_dataset = dgl.data.MiniGCDataset(batch_size * num_batches, 10, 20)
    data_loader = dgl.dataloading.GraphDataLoader(minigc_dataset, batch_size=batch_size, shuffle=True)
22
    assert isinstance(iter(data_loader), Iterator)
23
24
25
    for graph, label in data_loader:
        assert isinstance(graph, dgl.DGLGraph)
        assert F.asnumpy(label).shape[0] == batch_size
26

27
28
29
30
31
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('num_workers', [0, 4])
def test_cluster_gcn(num_workers):
    dataset = dgl.data.CoraFullDataset()
    g = dataset[0]
32
33
34
35
36
37
    sampler = dgl.dataloading.ClusterGCNSampler(g, 100)
    dataloader = dgl.dataloading.DataLoader(
        g, torch.arange(100), sampler, batch_size=4, num_workers=num_workers)
    assert len(dataloader) == 25
    for i, sg in enumerate(dataloader):
        pass
38
39
40
41
42
43
44
45

@pytest.mark.parametrize('num_workers', [0, 4])
def test_shadow(num_workers):
    g = dgl.data.CoraFullDataset()[0]
    sampler = dgl.dataloading.ShaDowKHopSampler([5, 10, 15])
    dataloader = dgl.dataloading.NodeDataLoader(
        g, torch.arange(g.num_nodes()), sampler,
        batch_size=5, shuffle=True, drop_last=False, num_workers=num_workers)
46
    for i, (input_nodes, output_nodes, subgraph) in enumerate(dataloader):
47
48
49
50
51
52
53
        assert torch.equal(input_nodes, subgraph.ndata[dgl.NID])
        assert torch.equal(input_nodes[:output_nodes.shape[0]], output_nodes)
        assert torch.equal(subgraph.ndata['label'], g.ndata['label'][input_nodes])
        assert torch.equal(subgraph.ndata['feat'], g.ndata['feat'][input_nodes])
        if i == 5:
            break

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
@pytest.mark.parametrize('num_workers', [0, 4])
@pytest.mark.parametrize('mode', ['node', 'edge', 'walk'])
def test_saint(num_workers, mode):
    g = dgl.data.CoraFullDataset()[0]

    if mode == 'node':
        budget = 100
    elif mode == 'edge':
        budget = 200
    elif mode == 'walk':
        budget = (3, 2)

    sampler = dgl.dataloading.SAINTSampler(mode, budget)
    dataloader = dgl.dataloading.DataLoader(
        g, torch.arange(100), sampler, num_workers=num_workers)
    assert len(dataloader) == 100
    for sg in dataloader:
        pass
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

@pytest.mark.parametrize('num_workers', [0, 4])
def test_neighbor_nonuniform(num_workers):
    g = dgl.graph(([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]))
    g.edata['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(g, [0, 1], sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes.item()
        neighbors = set(input_nodes[1:].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

    g = dgl.heterograph({
        ('B', 'BA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        ('C', 'CA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        })
    g.edges['BA'].data['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    g.edges['CA'].data['p'] = torch.FloatTensor([0, 0, 1, 1, 0, 0, 1, 1])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(
        g, {'A': [0, 1]}, sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes['A'].item()
        # Seed and neighbors are of different node types so slicing is not necessary here.
        neighbors = set(input_nodes['B'].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

        neighbors = set(input_nodes['C'].cpu().numpy())
        if seed == 1:
            assert neighbors == {7, 8}
        elif seed == 0:
            assert neighbors == {3, 4}

111
112
113
114
115
116
117
118
119
def _check_dtype(data, dtype, attr_name):
    if isinstance(data, dict):
        for k, v in data.items():
            assert getattr(v, attr_name) == dtype
    elif isinstance(data, list):
        for v in data:
            assert getattr(v, attr_name) == dtype
    else:
        assert getattr(data, attr_name) == dtype
120

121
122
123
124
125
126
127
128
129
130
def _check_device(data):
    if isinstance(data, dict):
        for k, v in data.items():
            assert v.device == F.ctx()
    elif isinstance(data, list):
        for v in data:
            assert v.device == F.ctx()
    else:
        assert data.device == F.ctx()

131
@parametrize_dtype
132
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor', 'neighbor2'])
133
@pytest.mark.parametrize('pin_graph', [False, True])
134
135
def test_node_dataloader(idtype, sampler_name, pin_graph):
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4])).astype(idtype)
136
137
138
    if F.ctx() != F.cpu() and pin_graph:
        g1.create_formats_()
        g1.pin_memory_()
Xin Yao's avatar
Xin Yao committed
139
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
140
141
    g1.ndata['label'] = F.copy_to(F.randn((g1.num_nodes(),)), F.cpu())

142
143
144
145
146
147
148
149
150
151
152
153
154
    for num_workers in [0, 1, 2]:
        sampler = {
            'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
            'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
            'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
        dataloader = dgl.dataloading.NodeDataLoader(
            g1, g1.nodes(), sampler, device=F.ctx(),
            batch_size=g1.num_nodes(),
            num_workers=num_workers)
        for input_nodes, output_nodes, blocks in dataloader:
            _check_device(input_nodes)
            _check_device(output_nodes)
            _check_device(blocks)
155
156
157
            _check_dtype(input_nodes, idtype, 'dtype')
            _check_dtype(output_nodes, idtype, 'dtype')
            _check_dtype(blocks, idtype, 'idtype')
158
159
160
161
162
163

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
164
    }).astype(idtype)
165
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
166
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
167
    batch_size = max(g2.num_nodes(nty) for nty in g2.ntypes)
168
169
170
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
171
        'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
172

173
174
175
176
177
178
179
180
    dataloader = dgl.dataloading.NodeDataLoader(
        g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
        sampler, device=F.ctx(), batch_size=batch_size)
    assert isinstance(iter(dataloader), Iterator)
    for input_nodes, output_nodes, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(blocks)
181
182
183
        _check_dtype(input_nodes, idtype, 'dtype')
        _check_dtype(output_nodes, idtype, 'dtype')
        _check_dtype(blocks, idtype, 'idtype')
184

185
186
    if g1.is_pinned():
        g1.unpin_memory_()
187

188
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor'])
189
190
191
192
@pytest.mark.parametrize('neg_sampler', [
    dgl.dataloading.negative_sampler.Uniform(2),
    dgl.dataloading.negative_sampler.GlobalUniform(15, False, 3),
    dgl.dataloading.negative_sampler.GlobalUniform(15, True, 3)])
193
@pytest.mark.parametrize('pin_graph', [False, True])
194
def test_edge_dataloader(sampler_name, neg_sampler, pin_graph):
Xin Yao's avatar
Xin Yao committed
195
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
196
197
198
    if F.ctx() != F.cpu() and pin_graph:
        g1.create_formats_()
        g1.pin_memory_()
Xin Yao's avatar
Xin Yao committed
199
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
200

201
202
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
203
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
204

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
205
    # no negative sampler
206
207
208
209
210
211
212
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(), batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
213
    # negative sampler
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(),
        negative_sampler=neg_sampler, batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
228
    })
229
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
230
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
231
    batch_size = max(g2.num_edges(ety) for ety in g2.canonical_etypes)
232
233
234
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
235
        }[sampler_name]
236

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
237
    # no negative sampler
238
239
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
240
241
        sampler, device=F.ctx(), batch_size=batch_size)
    for input_nodes, pos_pair_graph, blocks in dataloader:
242
243
244
245
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
246
    # negative sampler
247
248
249
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), negative_sampler=neg_sampler,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
250
        batch_size=batch_size)
251

252
    assert isinstance(iter(dataloader), Iterator)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
253
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
254
255
256
257
258
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

259
260
261
    if g1.is_pinned():
        g1.unpin_memory_()

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def _create_homogeneous():
    s = torch.randint(0, 200, (1000,), device=F.ctx())
    d = torch.randint(0, 200, (1000,), device=F.ctx())
    src = torch.cat([s, d])
    dst = torch.cat([d, s])
    g = dgl.graph((s, d), num_nodes=200)
    reverse_eids = torch.cat([torch.arange(1000, 2000), torch.arange(0, 1000)]).to(F.ctx())
    always_exclude = torch.randint(0, 1000, (50,), device=F.ctx())
    seed_edges = torch.arange(0, 1000, device=F.ctx())
    return g, reverse_eids, always_exclude, seed_edges

def _create_heterogeneous():
    edges = {}
    for utype, etype, vtype in [('A', 'AA', 'A'), ('A', 'AB', 'B')]:
        s = torch.randint(0, 200, (1000,), device=F.ctx())
        d = torch.randint(0, 200, (1000,), device=F.ctx())
        edges[utype, etype, vtype] = (s, d)
        edges[vtype, 'rev-' + etype, utype] = (d, s)
    g = dgl.heterograph(edges, num_nodes_dict={'A': 200, 'B': 200})
    reverse_etypes = {'AA': 'rev-AA', 'AB': 'rev-AB', 'rev-AA': 'AA', 'rev-AB': 'AB'}
    always_exclude = {
        'AA': torch.randint(0, 1000, (50,), device=F.ctx()),
        'AB': torch.randint(0, 1000, (50,), device=F.ctx())}
    seed_edges = {
        'AA': torch.arange(0, 1000, device=F.ctx()),
        'AB': torch.arange(0, 1000, device=F.ctx())}
    return g, reverse_etypes, always_exclude, seed_edges

def _find_edges_to_exclude(g, exclude, always_exclude, pair_eids):
    if exclude == None:
        return always_exclude
    elif exclude == 'self':
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_id':
        pair_eids = torch.cat([pair_eids, pair_eids + 1000])
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_types':
        pair_eids = {g.to_canonical_etype(k): v for k, v in pair_eids.items()}
        if ('A', 'AA', 'A') in pair_eids:
            pair_eids[('A', 'rev-AA', 'A')] = pair_eids[('A', 'AA', 'A')]
        if ('A', 'AB', 'B') in pair_eids:
            pair_eids[('B', 'rev-AB', 'A')] = pair_eids[('A', 'AB', 'B')]
        if always_exclude is not None:
            always_exclude = {g.to_canonical_etype(k): v for k, v in always_exclude.items()}
            for k in always_exclude.keys():
                if k in pair_eids:
                    pair_eids[k] = torch.cat([pair_eids[k], always_exclude[k]])
                else:
                    pair_eids[k] = always_exclude[k]
        return pair_eids

@pytest.mark.parametrize('always_exclude_flag', [False, True])
@pytest.mark.parametrize('exclude', [None, 'self', 'reverse_id', 'reverse_types'])
def test_edge_dataloader_excludes(exclude, always_exclude_flag):
    if exclude == 'reverse_types':
        g, reverse_etypes, always_exclude, seed_edges = _create_heterogeneous()
    else:
        g, reverse_eids, always_exclude, seed_edges = _create_homogeneous()
    g = g.to(F.ctx())
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
    if not always_exclude_flag:
        always_exclude = None

    kwargs = {}
    kwargs['exclude'] = (
        partial(_find_edges_to_exclude, g, exclude, always_exclude) if always_exclude_flag
        else exclude)
    kwargs['reverse_eids'] = reverse_eids if exclude == 'reverse_id' else None
    kwargs['reverse_etypes'] = reverse_etypes if exclude == 'reverse_types' else None

    dataloader = dgl.dataloading.EdgeDataLoader(
        g, seed_edges, sampler, batch_size=50, device=F.ctx(), **kwargs)
    for input_nodes, pair_graph, blocks in dataloader:
        block = blocks[0]
        pair_eids = pair_graph.edata[dgl.EID]
        block_eids = block.edata[dgl.EID]

        edges_to_exclude = _find_edges_to_exclude(g, exclude, always_exclude, pair_eids)
        if edges_to_exclude is None:
            continue
        edges_to_exclude = dgl.utils.recursive_apply(edges_to_exclude, lambda x: x.cpu().numpy())
        block_eids = dgl.utils.recursive_apply(block_eids, lambda x: x.cpu().numpy())

        if isinstance(edges_to_exclude, Mapping):
            for k in edges_to_exclude.keys():
                assert not np.isin(edges_to_exclude[k], block_eids[k]).any()
        else:
            assert not np.isin(edges_to_exclude, block_eids).any()

351
if __name__ == '__main__':
352
    test_graph_dataloader()
353
354
    test_cluster_gcn(0)
    test_neighbor_nonuniform(0)
355
356
357
    for exclude in [None, 'self', 'reverse_id', 'reverse_types']:
        test_edge_dataloader_excludes(exclude, False)
        test_edge_dataloader_excludes(exclude, True)