spmm.cu 32.1 KB
Newer Older
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/spmm.cu
 * \brief SPMM C APIs and definitions.
 */
#include <dgl/array.h>
#include "./spmm.cuh"
8
#include "./ge_spmm.cuh"
9
10
11
12
13
14
15
16
#include "./functor.cuh"
#include "../../runtime/cuda/cuda_common.h"

namespace dgl {

using namespace cuda;

namespace aten {
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
namespace {

/*! \brief Call cuBLAS geam API for transpose operation for float and double. */
template <typename DType>
cublasStatus_t Xgeam(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const DType* alpha, const DType* A, int lda,
    const DType* beta, const DType* B, int ldb,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUBLAS_STATUS_EXECUTION_FAILED;
}

template <>
cublasStatus_t Xgeam<float>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const float* alpha, const float* A, int lda,
    const float* beta, const float* B, int ldb,
    float* C, int ldc) {
  return cublasSgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

template <>
cublasStatus_t Xgeam<double>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const double* alpha, const double* A, int lda,
    const double* beta, const double* B, int ldb,
    double* C, int ldc) {
  return cublasDgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

/* \brief IndexSelect operator kernel implementation.
 * \note duplicate of IndexSelectKernel defined in array_index_select.cu
 */
template <typename DType, typename IdType>
__global__ void _IndexSelectKernel(
    const DType* __restrict__ in,
    const IdType* __restrict__ idx,
    DType* __restrict__ out,
    int n, int m) {
  int i = blockIdx.x;
  for (int j = threadIdx.x; j < m; j += blockDim.x)
    out[i * m + j] = in[idx[i] * m + j];
}

/* \brief Transpose operator kernel implementation.
 * \note not efficient but it's not a bottleneck, used for float16 dtype.
 */
template <typename DType>
__global__ void _TransposeKernel(
    const DType* __restrict__ in,
    DType* __restrict__ out,
    int n, int m) {
  int i = blockIdx.x;
  for (int j = threadIdx.x; j < m; j += blockDim.x)
    out[i * m + j] = in[j * n + i];
}

/*
 * \brief Tranpose the input matrix.
 * \param row number of rows of input matrix.
 * \param col number of columns of input matrix.
 */
template <typename DType>
void _Transpose(const DType* in, DType* out,
                int row, int col) {
  DType alpha = 1., beta = 0.;
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  if (!thr_entry->cublas_handle)
    CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
  CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle, thr_entry->stream));
  CUBLAS_CALL(Xgeam<DType>(
      thr_entry->cublas_handle,
      CUBLAS_OP_T,
      CUBLAS_OP_N,
      row, col,
      &alpha, in, col,
      &beta, nullptr, row,
      out, row));
}

/*
 * \brief Tranpose the input matrix for data type half.
 * \note cuBLAS has no geam API for half data type, fallback to our kernel.
 */
template <>
void _Transpose<half>(const half* in, half* out,
                      int row, int col) {
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = FindNumThreads(row);
  int nb = col;
  CUDA_KERNEL_CALL(_TransposeKernel, nb, nt, 0, thr_entry->stream, in, out, col, row);
}

/*
 * \brief
 */
template <typename DType, typename IdType>
__global__ void _IndexSelectKernel(const DType* array, const IdType* index,
                                   int64_t length, DType* out) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = array[index[tx]];
    tx += stride_x;
  }
}

/* \brief IndexSelect operator.
 * \note duplicate of IndexSelect defined in array_op.h but it can
 *    not be applied to float16 dtype.
 */
template<typename DType, typename IdType>
NDArray _IndexSelect(NDArray array, NDArray index) {
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  const DType* array_data = static_cast<DType*>(array->data);
  const IdType* idx_data = static_cast<IdType*>(index->data);
  const int64_t arr_len = array->shape[0];
  const int64_t len = index->shape[0];
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  if (len == 0)
    return ret;
  DType* ret_data = static_cast<DType*>(ret->data);
  const int nt = FindNumThreads(len);
  const int nb = (len + nt - 1) / nt;
  CUDA_KERNEL_CALL(_IndexSelectKernel, nb, nt, 0, thr_entry->stream,
      array_data, idx_data, len, ret_data);
  return ret;
}

}  // namespace

151
152
namespace cusparse {

153
#if CUDART_VERSION < 11000
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
template <typename DType>
cusparseStatus_t Xcsrmm2(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const DType* alpha, const cusparseMatDescr_t descrA,
    const DType* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const DType* B, int ldb, const DType* beta, DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUSPARSE_STATUS_EXECUTION_FAILED;
}

template <>
cusparseStatus_t Xcsrmm2<float>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const float* alpha, const cusparseMatDescr_t descrA,
    const float* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const float* B, int ldb, const float* beta, float* C, int ldc) {
  return cusparseScsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}

template <>
cusparseStatus_t Xcsrmm2<double>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const double* alpha, const cusparseMatDescr_t descrA,
    const double* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const double* B, int ldb, const double* beta, double* C, int ldc) {
  return cusparseDcsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}
185
#endif
186
187

/*! Cusparse implementation of SpMM on Csr format. */
188
template <typename DType, typename IdType>
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
void CusparseCsrmm2(
    const DLContext& ctx,
    const CSRMatrix& csr,
    const DType* B_data, const DType* A_data,
    DType* C_data,
    int x_length) {
  // We use csrmm2 to perform following operation:
  // C = A x B, where A is a sparse matrix in csr format, B is the dense matrix for node
  // feature tensor. However, since cusparse only supports column-major, while our tensor
  // is stored in row-major, the actual computation is:
  // C = trans(A x trans(B)).
  // Currently, we use cublasXgeam to implement transposition and allocate intermediate
  // workspace memory for this.
  const int m = csr.num_rows;
  const int n = x_length;
  const int k = csr.num_cols;
  const int nnz = csr.indices->shape[0];
  const DType alpha = 1.0;
  const DType beta = 0.0;
  // device
  auto device = runtime::DeviceAPI::Get(ctx);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  // allocate cusparse handle if needed
  if (!thr_entry->cusparse_handle) {
    CUSPARSE_CALL(cusparseCreate(&(thr_entry->cusparse_handle)));
  }
  CUSPARSE_CALL(cusparseSetStream(thr_entry->cusparse_handle, thr_entry->stream));
  // all one data array
  DType* valptr = nullptr;
  if (!A_data) {
    valptr = static_cast<DType*>(device->AllocWorkspace(ctx, nnz * sizeof(DType)));
    _Fill(valptr, nnz, static_cast<DType>(1.));
  }
222
223
224
#if CUDART_VERSION >= 11000
  cusparseSpMatDescr_t matA;
  cusparseDnMatDescr_t matB, matC;
225
226
  constexpr auto dtype = cuda_dtype<DType>::value;
  constexpr auto idtype = cusparse_idtype<IdType>::value;
227
228
  CUSPARSE_CALL(cusparseCreateCsr(&matA,
      m, k, nnz,
229
230
      static_cast<IdType*>(csr.indptr->data),
      static_cast<IdType*>(csr.indices->data),
231
      const_cast<DType*>(valptr? valptr : A_data),
232
233
      idtype, idtype,
      CUSPARSE_INDEX_BASE_ZERO, dtype));
234
  CUSPARSE_CALL(cusparseCreateDnMat(&matB,
235
      k, n, n,
236
      const_cast<DType*>(B_data), dtype, CUSPARSE_ORDER_ROW));
237
  CUSPARSE_CALL(cusparseCreateDnMat(&matC,
238
      m, n, n,
239
      C_data, dtype, CUSPARSE_ORDER_ROW));
240
241

  auto transA = CUSPARSE_OPERATION_NON_TRANSPOSE;
242
  auto transB = CUSPARSE_OPERATION_NON_TRANSPOSE;
243
244
245
246
  size_t workspace_size;
  CUSPARSE_CALL(cusparseSpMM_bufferSize(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
247
      dtype, CUSPARSE_SPMM_CSR_ALG2,
248
249
250
251
252
      &workspace_size));
  void* workspace = device->AllocWorkspace(ctx, workspace_size);
  CUSPARSE_CALL(cusparseSpMM(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
253
      dtype, CUSPARSE_SPMM_CSR_ALG2,
254
255
256
257
258
259
260
      workspace));
  device->FreeWorkspace(ctx, workspace);

  CUSPARSE_CALL(cusparseDestroySpMat(matA));
  CUSPARSE_CALL(cusparseDestroyDnMat(matB));
  CUSPARSE_CALL(cusparseDestroyDnMat(matC));
#else
261
262
263
  // allocate matrix for temporary transposed output
  DType* trans_out = static_cast<DType*>(device->AllocWorkspace(ctx, m * n * sizeof(DType)));

264
265
266
267
268
269
270
271
272
273
274
275
276
  cusparseMatDescr_t descr;
  CUSPARSE_CALL(cusparseCreateMatDescr(&descr));
  CUSPARSE_CALL(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
  CUSPARSE_CALL(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
  CUSPARSE_CALL(Xcsrmm2<DType>(
      thr_entry->cusparse_handle,
      CUSPARSE_OPERATION_NON_TRANSPOSE,
      CUSPARSE_OPERATION_TRANSPOSE,
      m, n, k, nnz, &alpha,
      descr, (valptr)? valptr : A_data,
      static_cast<int32_t*>(csr.indptr->data),
      static_cast<int32_t*>(csr.indices->data),
      B_data, n, &beta, trans_out, m));
277
  CUSPARSE_CALL(cusparseDestroyMatDescr(descr));
278
  // transpose the output matrix
279
  _Transpose(trans_out, C_data, n, m);
280
  device->FreeWorkspace(ctx, trans_out);
281
282
283
#endif
  if (valptr)
    device->FreeWorkspace(ctx, valptr);
284
}
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

/*! Cusparse implementation of SpMM on Csr format. */
template <typename DType, typename IdType>
void CusparseCsrmm2Hetero(
    const DLContext& ctx,
    const CSRMatrix& csr,
    const DType* B_data, const DType* A_data,
    DType* C_data,
    int64_t x_length,
    cudaStream_t strm_id) {
  // We use csrmm2 to perform following operation:
  // C = A x B, where A is a sparse matrix in csr format, B is the dense matrix for node
  // feature tensor. However, since cusparse only supports column-major, while our tensor
  // is stored in row-major, the actual computation is:
  // C = trans(A x trans(B)).
  // Currently, we use cublasXgeam to implement transposition and allocate intermediate
  // workspace memory for this.
  int int_maxlimit = std::numeric_limits<int>::max();
  CHECK_GE(int_maxlimit, (csr.num_rows));
  CHECK_GE(int_maxlimit, csr.num_cols);
  CHECK_GE(int_maxlimit, csr.indices->shape[0]);
  const int m = csr.num_rows;
  const int n = x_length;
  const int k = csr.num_cols;
  const int nnz = csr.indices->shape[0];
  const DType alpha = 1.0;
  const DType beta = 1.0;
  // device
  auto device = runtime::DeviceAPI::Get(ctx);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  // allocate cusparse handle if needed
  if (!thr_entry->cusparse_handle) {
    CUSPARSE_CALL(cusparseCreate(&(thr_entry->cusparse_handle)));
  }
  CUSPARSE_CALL(cusparseSetStream(thr_entry->cusparse_handle, strm_id));
  // all one data array
  DType* valptr = nullptr;
  if (!A_data) {
    valptr = static_cast<DType*>(device->AllocWorkspace(ctx, nnz * sizeof(DType)));
    _Fill(valptr, nnz, static_cast<DType>(1.));
  }
#if CUDART_VERSION >= 11000
  cusparseSpMatDescr_t matA;
  cusparseDnMatDescr_t matB, matC;
  constexpr auto dtype = cuda_dtype<DType>::value;
  constexpr auto idtype = cusparse_idtype<IdType>::value;
  CUSPARSE_CALL(cusparseCreateCsr(&matA,
      m, k, nnz,
      static_cast<IdType*>(csr.indptr->data),
      static_cast<IdType*>(csr.indices->data),
      const_cast<DType*>(valptr? valptr : A_data),
      idtype, idtype,
      CUSPARSE_INDEX_BASE_ZERO, dtype));
  CUSPARSE_CALL(cusparseCreateDnMat(&matB,
      k, n, n,
      const_cast<DType*>(B_data), dtype, CUSPARSE_ORDER_ROW));
  CUSPARSE_CALL(cusparseCreateDnMat(&matC,
      m, n, n,
      C_data, dtype, CUSPARSE_ORDER_ROW));

  auto transA = CUSPARSE_OPERATION_NON_TRANSPOSE;
  auto transB = CUSPARSE_OPERATION_NON_TRANSPOSE;
  size_t workspace_size;
  CUSPARSE_CALL(cusparseSpMM_bufferSize(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
      dtype, CUSPARSE_SPMM_CSR_ALG2,
      &workspace_size));
  void* workspace = device->AllocWorkspace(ctx, workspace_size);
  CUSPARSE_CALL(cusparseSpMM(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
      dtype, CUSPARSE_SPMM_CSR_ALG2,
      workspace));
  device->FreeWorkspace(ctx, workspace);

  CUSPARSE_CALL(cusparseDestroySpMat(matA));
  CUSPARSE_CALL(cusparseDestroyDnMat(matB));
  CUSPARSE_CALL(cusparseDestroyDnMat(matC));
#else
  cusparseMatDescr_t descr;
  CUSPARSE_CALL(cusparseCreateMatDescr(&descr));
  CUSPARSE_CALL(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
  CUSPARSE_CALL(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
  CHECK_EQ(sizeof(IdType), sizeof(int32_t));
  CUSPARSE_CALL(Xcsrmm2<DType>(
      thr_entry->cusparse_handle,
      CUSPARSE_OPERATION_NON_TRANSPOSE,
      CUSPARSE_OPERATION_TRANSPOSE,
      m, n, k, nnz, &alpha,
      descr, (valptr)? valptr : A_data,
      static_cast<int32_t*>(csr.indptr->data),
      static_cast<int32_t*>(csr.indices->data),
378
      B_data, n, &beta, C_data, m));
379
380
381
382
383
384
  CUSPARSE_CALL(cusparseDestroyMatDescr(descr));
#endif
  if (valptr)
    device->FreeWorkspace(ctx, valptr);
}

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
}  // namespace cusparse

#define SWITCH_OP(op, Op, ...)                                      \
  do {                                                              \
    if ((op) == "add") {                                            \
      typedef cuda::binary::Add<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "sub") {                                     \
      typedef cuda::binary::Sub<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "mul") {                                     \
      typedef cuda::binary::Mul<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "div") {                                     \
      typedef cuda::binary::Div<DType> Op;                          \
      { __VA_ARGS__ }                                               \
401
402
    } else if ((op) == "copy_lhs") {                                \
      typedef cuda::binary::CopyLhs<DType> Op;                      \
403
      { __VA_ARGS__ }                                               \
404
405
    } else if ((op) == "copy_rhs") {                                \
      typedef cuda::binary::CopyRhs<DType> Op;                      \
406
407
408
409
410
411
      { __VA_ARGS__ }                                               \
    } else {                                                        \
      LOG(FATAL) << "Unsupported SpMM binary operator: " << op;     \
    }                                                               \
  } while (0)

412
413
414
415
/*!
 * \brief Determine whether cusparse SpMM function is applicable.
 */
template <int bits, typename IdType>
416
inline bool cusparse_available(bool more_nnz_than_matrix_size) {
417
418
419
420
421
422
423
424
#if CUDART_VERSION < 11000
  if (std::is_same<IdType, int>::value)
    if (bits > 16)
      return true;
  return false;
#else
  if (bits == 16)
    return false;  // cusparse's SpMM on fp16 is slow, temporally disabled.
425
426
  // If the CSR matrix has more NNZ than matrix size, we should not use cuSPARSE 11.1.
  return !more_nnz_than_matrix_size;
427
428
429
#endif
}

430
431
432
433
434
/*!
 * \brief CUDA implementation of g-SpMM on Csr format.
 * \note use cusparse if the reduce operator is `sum` and there is
 *       no broadcast, use dgl's kernel in other cases.
 */
435
template <int XPU, typename IdType, int bits>
436
437
438
439
440
441
442
void SpMMCsr(const std::string& op, const std::string& reduce,
             const BcastOff& bcast,
             const CSRMatrix& csr,
             NDArray ufeat,
             NDArray efeat,
             NDArray out,
             std::vector<NDArray> out_aux) {
443
444
445
446
  int64_t feat_len = bcast.out_len;
  bool is_scalar_efeat = efeat.NumElements() == csr.indices->shape[0];
  bool use_efeat = op != "copy_lhs";

447
  if (reduce == "sum") {
448
449
450
    bool more_nnz = (csr.indices->shape[0] > csr.num_rows * csr.num_cols);
    if (op == "copy_lhs" && cusparse_available<bits, IdType>(more_nnz)) {
      // cusparse
451
452
453
      int64_t x_length = 1;
      for (int i = 1; i < ufeat->ndim; ++i)
        x_length *= ufeat->shape[i];
454
455
456
457
458
459
460
461
      SWITCH_BITS(bits, DType, {
        cusparse::CusparseCsrmm2<DType, IdType>(
            ufeat->ctx, csr,
            static_cast<DType*>(ufeat->data),
            nullptr,
            static_cast<DType*>(out->data),
            x_length);
      });
462
463
    } else if (op == "mul" && is_scalar_efeat && cusparse_available<bits, IdType>(more_nnz)) {
      // cusparse
464
465
466
      int64_t x_length = 1;
      for (int i = 1; i < ufeat->ndim; ++i)
        x_length *= ufeat->shape[i];
467
468
469
470
471
472
473
474
475
476
477
478
479
      if (!IsNullArray(csr.data)) {
        SWITCH_BITS(bits, DType, {
          efeat = _IndexSelect<DType, IdType>(efeat, csr.data);
        });
      }
      SWITCH_BITS(bits, DType, {
        cusparse::CusparseCsrmm2<DType, IdType>(
            ufeat->ctx, csr,
            static_cast<DType*>(ufeat->data),
            static_cast<DType*>(efeat->data),
            static_cast<DType*>(out->data),
            x_length);
      });
480
    } else {  // general kernel
481
482
483
484
485
      SWITCH_BITS(bits, DType, {
        SWITCH_OP(op, Op, {
          cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Sum<IdType, DType> >(
              bcast, csr, ufeat, efeat, out, NullArray(), NullArray());
        });
486
487
488
      });
    }
  } else if (reduce == "max") {
489
490
491
492
493
    SWITCH_BITS(bits, DType, {
      SWITCH_OP(op, Op, {
        cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Max<IdType, DType> >(
            bcast, csr, ufeat, efeat, out, out_aux[0], out_aux[1]);
      });
494
495
    });
  } else if (reduce == "min") {
496
497
498
499
500
    SWITCH_BITS(bits, DType, {
      SWITCH_OP(op, Op, {
        cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Min<IdType, DType> >(
            bcast, csr, ufeat, efeat, out, out_aux[0], out_aux[1]);
      });
501
502
503
504
505
506
    });
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

507
508
509
510
511
512
513
514
515
516
517
/*!
 * \brief CUDA implementation of g-SpMM on Csr format.
 * \note use cusparse if the reduce operator is `sum` and there is
 *       no broadcast, use dgl's kernel in other cases.
 */
template <int XPU, typename IdType, int bits>
void SpMMCsrHetero(const std::string& op, const std::string& reduce,
             const BcastOff& bcast,
             const std::vector<CSRMatrix>& vec_csr,
             const std::vector<NDArray>& vec_ufeat,
             const std::vector<NDArray>& vec_efeat,
518
519
             std::vector<NDArray>* vec_out,
             std::vector<std::vector<NDArray>>* out_aux,
520
521
             const std::vector<dgl_type_t>& ufeat_ntids,  // ufeat node type id
             const std::vector<dgl_type_t>& out_ntids) {  // output node type id
522
  bool is_scalar_efeat = vec_efeat[0].NumElements() == vec_csr[0].indices->shape[0];
523
  bool use_efeat = op != "copy_lhs";
524
525
  auto device = runtime::DeviceAPI::Get(vec_csr[0].indptr->ctx);
  SWITCH_BITS(bits, DType, {
526
    std::vector<DType*> trans_out((*vec_out).size(), NULL);
527
528

    bool use_legacy_cusparsemm =
529
        (CUDART_VERSION < 11000) && (reduce == "sum") &&
530
531
532
        // legacy cuSPARSE does not care about NNZ, hence the argument "false".
        ((op == "copy_lhs" && cusparse_available<bits, IdType>(false)) ||
         (op == "mul" && is_scalar_efeat && cusparse_available<bits, IdType>(false)));
533
534
    // Create temporary output buffer to store non-transposed output
    if (use_legacy_cusparsemm) {
535
536
537
      for (dgl_type_t ntype = 0; ntype < (*vec_out).size(); ++ntype) {
        const int m = (*vec_out)[ntype]->shape[0];
        const int n = (*vec_out)[ntype]->shape[1];
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        if (m == 0) continue;
        DType *out = static_cast<DType*>(device->AllocWorkspace(vec_csr[0].indptr->ctx,
          m * n * sizeof(DType)));
        CUDA_CALL(cudaMemset(out, 0, m * n * sizeof(DType)));
        trans_out[ntype] = out;
      }
    }
    // Check shape of ufeat for all relation type and compute feature size
    int64_t x_length = 1;
    for (dgl_type_t etype = 0; etype < (ufeat_ntids.size() - 1); ++etype) {
      NDArray ufeat = vec_ufeat[ufeat_ntids[etype]];
      NDArray next_ufeat = vec_ufeat[ufeat_ntids[etype + 1]];
      CHECK_EQ(ufeat->ndim, next_ufeat->ndim) << "Input features have different shapes";
      for (int i = 1; i < ufeat->ndim; ++i) {
        if (ufeat->shape[i] != next_ufeat->shape[i]) {
          if (ufeat->shape[i] == 1 || next_ufeat->shape[i] == 1)
            LOG(FATAL) <<
              "Homogenized message passing on heterogeneous graphs does not support " <<
              "automatic broadcasting.  Please manually broadcast it before calling " <<
              "message passing functions.";
          else
            LOG(FATAL) << "Input features have different shapes.";
          return;
        }

        if (etype == 0)
          x_length *= ufeat->shape[i];
      }
    }
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    // TODO(Israt): Can python do the following initializations while creating the tensors?
    if (reduce == "max" ||  reduce == "min") {
      const int64_t dim = bcast.out_len;
      std::vector<bool> updated((*vec_out).size(), false);
      for (dgl_type_t etype = 0; etype < ufeat_ntids.size(); ++etype) {
        DType *out_off = (*vec_out)[out_ntids[etype]].Ptr<DType>();
        if (reduce == "max")
          _Fill(out_off, vec_csr[etype].num_rows * dim, cuda::reduce::Max<IdType, DType>::zero());
        else  // min
          _Fill(out_off, vec_csr[etype].num_rows * dim, cuda::reduce::Min<IdType, DType>::zero());
        const dgl_type_t dst_id = out_ntids[etype];
        if (!updated[dst_id]) {
          updated[dst_id] = true;
          if (op == "copy_lhs") {
            IdType *argu_ntype = (*out_aux)[2][dst_id].Ptr<IdType>();
            _Fill(argu_ntype, vec_csr[etype].num_rows * dim, static_cast<IdType>(-1));
          }
          if (op == "copy_rhs") {
            IdType *arge_etype = (*out_aux)[3][dst_id].Ptr<IdType>();
            _Fill(arge_etype, vec_csr[etype].num_rows * dim, static_cast<IdType>(-1));
          }
        }
      }
    }
591
592
593
594
595
596
597

    auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
    for (dgl_type_t etype = 0; etype < ufeat_ntids.size(); ++etype) {
      const dgl_type_t src_id = ufeat_ntids[etype];
      const dgl_type_t dst_id = out_ntids[etype];
      CSRMatrix csr = vec_csr[etype];
      if (reduce == "sum") {
598
        bool more_nnz = (csr.indices->shape[0] > csr.num_rows * csr.num_cols);
599
          /* Call  SpMM for each relation type */
600
        if (op == "copy_lhs" && cusparse_available<bits, IdType>(more_nnz)) {  // cusparse
601
602
          /* If CUDA is less than 11.0, put the output in trans_out for later transposition */
          DType *out = (CUDART_VERSION < 11000) ? trans_out[dst_id] :
603
            static_cast<DType*>((*vec_out)[dst_id]->data);
604
605
606
607
          cusparse::CusparseCsrmm2Hetero<DType, IdType>(
              csr.indptr->ctx, csr,
              static_cast<DType*>(vec_ufeat[src_id]->data),
              nullptr,
608
609
              out,
              x_length, thr_entry->stream);
610
        } else if (op == "mul" && is_scalar_efeat &&
611
            cusparse_available<bits, IdType>(more_nnz)) {  // cusparse
612
          NDArray efeat = vec_efeat[etype];
613
          if (!IsNullArray(csr.data))
614
            efeat = _IndexSelect<DType, IdType>(efeat, csr.data);
615
616
617
618
          cusparse::CusparseCsrmm2Hetero<DType, IdType>(
              csr.indptr->ctx, csr,
              static_cast<DType*>(vec_ufeat[src_id]->data),
              static_cast<DType*>(efeat->data),
619
620
              // TODO(Israt): Change (*vec_out) to trans_out to support CUDA version < 11
              static_cast<DType*>((*vec_out)[dst_id]->data),
621
              x_length, thr_entry->stream);
622
623
624
625
626
627
        } else {  // general kernel
          NDArray ufeat = (vec_ufeat.size() == 0) ?
            NullArray() : vec_ufeat[src_id];
          NDArray efeat = (vec_efeat.size() == 0) ?
            NullArray() : vec_efeat[etype];
          SWITCH_OP(op, Op, {
628
            cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Sum<IdType, DType> >(
629
                bcast, csr, ufeat, efeat, (*vec_out)[dst_id], NullArray(), NullArray());
630
631
          });
        }
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
      } else if (reduce == "max") {
          SWITCH_OP(op, Op, {
            NDArray ufeat = (vec_ufeat.size() == 0) ?
                NullArray() : vec_ufeat[src_id];
            NDArray efeat = (vec_efeat.size() == 0) ?
                NullArray() : vec_efeat[etype];
            cuda::SpMMCmpCsrHetero<IdType, DType, Op, cuda::reduce::Max<IdType, DType> >(
                bcast, csr, ufeat, efeat, (*vec_out)[dst_id], (*out_aux)[0][dst_id],
                (*out_aux)[1][dst_id], (*out_aux)[2][dst_id], (*out_aux)[3][dst_id],
                src_id, etype);
          });
      } else if (reduce == "min") {
          SWITCH_OP(op, Op, {
            NDArray ufeat = (vec_ufeat.size() == 0) ?
                NullArray() : vec_ufeat[src_id];
            NDArray efeat = (vec_efeat.size() == 0) ?
                NullArray() : vec_efeat[etype];
            cuda::SpMMCmpCsrHetero<IdType, DType, Op, cuda::reduce::Min<IdType, DType> >(
                bcast, csr, ufeat, efeat, (*vec_out)[dst_id], (*out_aux)[0][dst_id],
                (*out_aux)[1][dst_id], (*out_aux)[2][dst_id], (*out_aux)[3][dst_id],
                src_id, etype);
        });
654
655
656
      } else {
        LOG(FATAL) << "Not implemented";
      }
657
    }
658
659
660

    if (use_legacy_cusparsemm) {
      // transpose output
661
662
663
      for (dgl_type_t ntype = 0; ntype < (*vec_out).size(); ++ntype) {
        const int m = (*vec_out)[ntype]->shape[0];
        const int n = (*vec_out)[ntype]->shape[1];
664
        if (m == 0) continue;
665
        DType *C_data = static_cast<DType*>((*vec_out)[ntype]->data);
666
667
668
669
670
        _Transpose(trans_out[ntype], C_data, n, m);
        device->FreeWorkspace(vec_csr[0].indptr->ctx, trans_out[ntype]);
      }
    }
  });
671
}
672

673
674
675
/*!
 * \brief CUDA implementation of g-SpMM on Coo format.
 */
676
template <int XPU, typename IdType, int bits>
677
678
679
680
681
682
683
684
void SpMMCoo(const std::string& op, const std::string& reduce,
             const BcastOff& bcast,
             const COOMatrix& coo,
             NDArray ufeat,
             NDArray efeat,
             NDArray out,
             std::vector<NDArray> out_aux) {
  if (reduce == "sum") {
685
686
687
688
689
    SWITCH_BITS(bits, DType, {
      SWITCH_OP(op, Op, {
        cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Sum<IdType, DType, true> > (
            bcast, coo, ufeat, efeat, out, NullArray(), NullArray());
      });
690
691
    });
  } else if (reduce == "max") {
692
693
694
695
696
    SWITCH_BITS(bits, DType, {
      SWITCH_OP(op, Op, {
        cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Max<IdType, DType, true> > (
            bcast, coo, ufeat, efeat, out, out_aux[0], out_aux[1]);
      });
697
698
    });
  }  else if (reduce == "min") {
699
700
701
702
703
    SWITCH_BITS(bits, DType, {
      SWITCH_OP(op, Op, {
        cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Min<IdType, DType, true> > (
            bcast, coo, ufeat, efeat, out, out_aux[0], out_aux[1]);
      });
704
705
706
707
708
709
    });
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

710
template void SpMMCsr<kDLGPU, int32_t, 16>(
711
712
713
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
714
template void SpMMCsr<kDLGPU, int64_t, 16>(
715
716
717
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
718
template void SpMMCsr<kDLGPU, int32_t, 32>(
719
720
721
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
722
723
724
725
726
727
728
729
730
template void SpMMCsr<kDLGPU, int64_t, 32>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCsr<kDLGPU, int32_t, 64>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCsr<kDLGPU, int64_t, 64>(
731
732
733
734
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);

735
736
737
738
template void SpMMCsrHetero<kDLGPU, int32_t, 16>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
739
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
740
741
742
743
744
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);
template void SpMMCsrHetero<kDLGPU, int64_t, 16>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
745
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
746
747
748
749
750
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);
template void SpMMCsrHetero<kDLGPU, int32_t, 32>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
751
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
752
753
754
755
756
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);
template void SpMMCsrHetero<kDLGPU, int64_t, 32>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
757
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
758
759
760
761
762
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);
template void SpMMCsrHetero<kDLGPU, int32_t, 64>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
763
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
764
765
766
767
768
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);
template void SpMMCsrHetero<kDLGPU, int64_t, 64>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const std::vector<CSRMatrix>& csr,
    const std::vector<NDArray>& ufeat, const std::vector<NDArray>& efeat,
769
    std::vector<NDArray>* out, std::vector<std::vector<NDArray>>* out_aux,
770
771
    const std::vector<dgl_type_t>& ufeat_ntids, const std::vector<dgl_type_t>& out_ntids);

772
773
774
775
776
template void SpMMCoo<kDLGPU, int32_t, 16>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCoo<kDLGPU, int64_t, 16>(
777
778
779
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
780
template void SpMMCoo<kDLGPU, int32_t, 32>(
781
782
783
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
784
template void SpMMCoo<kDLGPU, int64_t, 32>(
785
786
787
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
788
template void SpMMCoo<kDLGPU, int32_t, 64>(
789
790
791
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
792
793
794
795
796
template void SpMMCoo<kDLGPU, int64_t, 64>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);

797
798
799

}  // namespace aten
}  // namespace dgl