spmm.cu 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/spmm.cu
 * \brief SPMM C APIs and definitions.
 */
#include <dgl/array.h>
#include "./spmm.cuh"
#include "./functor.cuh"
#include "../../runtime/cuda/cuda_common.h"

namespace dgl {

using namespace cuda;

namespace aten {
namespace {

/*! \brief Fill the vector started from ptr of size length with val */
template <typename DType>
void _Fill(DType* ptr, size_t length, DType val) {
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = FindNumThreads(length);
  int nb = (length + nt - 1) / nt;  // on x-axis, no need to worry about upperbound.
24
  CUDA_KERNEL_CALL(cuda::_FillKernel, nb, nt, 0, thr_entry->stream, ptr, length, val);
25
26
27
28
29
30
}

}  // namespace

namespace cusparse {

31
#if CUDART_VERSION < 11000
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
template <typename DType>
cusparseStatus_t Xcsrmm2(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const DType* alpha, const cusparseMatDescr_t descrA,
    const DType* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const DType* B, int ldb, const DType* beta, DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUSPARSE_STATUS_EXECUTION_FAILED;
}

template <>
cusparseStatus_t Xcsrmm2<float>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const float* alpha, const cusparseMatDescr_t descrA,
    const float* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const float* B, int ldb, const float* beta, float* C, int ldc) {
  return cusparseScsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}

template <>
cusparseStatus_t Xcsrmm2<double>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const double* alpha, const cusparseMatDescr_t descrA,
    const double* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const double* B, int ldb, const double* beta, double* C, int ldc) {
  return cusparseDcsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}
63
#endif
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

template <typename DType>
cublasStatus_t Xgeam(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const DType* alpha, const DType* A, int lda,
    const DType* beta, const DType* B, int ldb,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUBLAS_STATUS_EXECUTION_FAILED;
}

template <>
cublasStatus_t Xgeam<float>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const float* alpha, const float* A, int lda,
    const float* beta, const float* B, int ldb,
    float* C, int ldc) {
  return cublasSgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

template <>
cublasStatus_t Xgeam<double>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const double* alpha, const double* A, int lda,
    const double* beta, const double* B, int ldb,
    double* C, int ldc) {
  return cublasDgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

/*! Cusparse implementation of SpMM on Csr format. */
template <typename DType>
void CusparseCsrmm2(
    const DLContext& ctx,
    const CSRMatrix& csr,
    const DType* B_data, const DType* A_data,
    DType* C_data,
    int x_length) {
  // We use csrmm2 to perform following operation:
  // C = A x B, where A is a sparse matrix in csr format, B is the dense matrix for node
  // feature tensor. However, since cusparse only supports column-major, while our tensor
  // is stored in row-major, the actual computation is:
  // C = trans(A x trans(B)).
  // Currently, we use cublasXgeam to implement transposition and allocate intermediate
  // workspace memory for this.
  const int m = csr.num_rows;
  const int n = x_length;
  const int k = csr.num_cols;
  const int nnz = csr.indices->shape[0];
  const DType alpha = 1.0;
  const DType beta = 0.0;
  // device
  auto device = runtime::DeviceAPI::Get(ctx);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  // allocate cusparse handle if needed
  if (!thr_entry->cusparse_handle) {
    CUSPARSE_CALL(cusparseCreate(&(thr_entry->cusparse_handle)));
  }
  CUSPARSE_CALL(cusparseSetStream(thr_entry->cusparse_handle, thr_entry->stream));
  // allocate matrix for temporary transposed output
  DType* trans_out = static_cast<DType*>(device->AllocWorkspace(ctx, m * n * sizeof(DType)));
  // all one data array
  DType* valptr = nullptr;
  if (!A_data) {
    valptr = static_cast<DType*>(device->AllocWorkspace(ctx, nnz * sizeof(DType)));
    _Fill(valptr, nnz, static_cast<DType>(1.));
  }
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#if CUDART_VERSION >= 11000
  cusparseSpMatDescr_t matA;
  cusparseDnMatDescr_t matB, matC;
  constexpr auto cuda_dtype = std::is_same<DType, float>::value ? CUDA_R_32F: CUDA_R_64F;
  CUSPARSE_CALL(cusparseCreateCsr(&matA,
      m, k, nnz,
      static_cast<int32_t*>(csr.indptr->data),
      static_cast<int32_t*>(csr.indices->data),
      const_cast<DType*>(valptr? valptr : A_data),
      CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
      CUSPARSE_INDEX_BASE_ZERO, cuda_dtype));
  CUSPARSE_CALL(cusparseCreateDnMat(&matB,
      n, k, n,
      const_cast<DType*>(B_data), cuda_dtype, CUSPARSE_ORDER_COL));
  CUSPARSE_CALL(cusparseCreateDnMat(&matC,
      m, n, m,
      trans_out, cuda_dtype, CUSPARSE_ORDER_COL));

  auto transA = CUSPARSE_OPERATION_NON_TRANSPOSE;
  auto transB = CUSPARSE_OPERATION_TRANSPOSE;
  size_t workspace_size;
  CUSPARSE_CALL(cusparseSpMM_bufferSize(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
      cuda_dtype, CUSPARSE_CSRMM_ALG1,
      &workspace_size));
  void* workspace = device->AllocWorkspace(ctx, workspace_size);
  CUSPARSE_CALL(cusparseSpMM(
      thr_entry->cusparse_handle, transA, transB,
      &alpha, matA, matB, &beta, matC,
      cuda_dtype, CUSPARSE_CSRMM_ALG1,
      workspace));
  device->FreeWorkspace(ctx, workspace);

  CUSPARSE_CALL(cusparseDestroySpMat(matA));
  CUSPARSE_CALL(cusparseDestroyDnMat(matB));
  CUSPARSE_CALL(cusparseDestroyDnMat(matC));
#else
170
171
172
173
174
175
176
177
178
179
180
181
182
  cusparseMatDescr_t descr;
  CUSPARSE_CALL(cusparseCreateMatDescr(&descr));
  CUSPARSE_CALL(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
  CUSPARSE_CALL(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
  CUSPARSE_CALL(Xcsrmm2<DType>(
      thr_entry->cusparse_handle,
      CUSPARSE_OPERATION_NON_TRANSPOSE,
      CUSPARSE_OPERATION_TRANSPOSE,
      m, n, k, nnz, &alpha,
      descr, (valptr)? valptr : A_data,
      static_cast<int32_t*>(csr.indptr->data),
      static_cast<int32_t*>(csr.indices->data),
      B_data, n, &beta, trans_out, m));
183
  CUSPARSE_CALL(cusparseDestroyMatDescr(descr));
184
#endif
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  if (valptr)
    device->FreeWorkspace(ctx, valptr);
  // transpose the output matrix
  if (!thr_entry->cublas_handle)
    CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
  CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle, thr_entry->stream));
  CUBLAS_CALL(Xgeam<DType>(
      thr_entry->cublas_handle,
      CUBLAS_OP_T,
      CUBLAS_OP_N,
      n, m,
      &alpha, trans_out, m,
      &beta, nullptr, n,
      C_data, n));
  device->FreeWorkspace(ctx, trans_out);
}
}  // namespace cusparse

#define SWITCH_OP(op, Op, ...)                                      \
  do {                                                              \
    if ((op) == "add") {                                            \
      typedef cuda::binary::Add<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "sub") {                                     \
      typedef cuda::binary::Sub<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "mul") {                                     \
      typedef cuda::binary::Mul<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "div") {                                     \
      typedef cuda::binary::Div<DType> Op;                          \
      { __VA_ARGS__ }                                               \
217
218
    } else if ((op) == "copy_lhs") {                                \
      typedef cuda::binary::CopyLhs<DType> Op;                      \
219
      { __VA_ARGS__ }                                               \
220
221
    } else if ((op) == "copy_rhs") {                                \
      typedef cuda::binary::CopyRhs<DType> Op;                      \
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
      { __VA_ARGS__ }                                               \
    } else {                                                        \
      LOG(FATAL) << "Unsupported SpMM binary operator: " << op;     \
    }                                                               \
  } while (0)

/*!
 * \brief CUDA implementation of g-SpMM on Csr format.
 * \note use cusparse if the reduce operator is `sum` and there is
 *       no broadcast, use dgl's kernel in other cases.
 */
template <int XPU, typename IdType, typename DType>
void SpMMCsr(const std::string& op, const std::string& reduce,
             const BcastOff& bcast,
             const CSRMatrix& csr,
             NDArray ufeat,
             NDArray efeat,
             NDArray out,
             std::vector<NDArray> out_aux) {
  if (reduce == "sum") {
242
    if (sizeof(IdType) == 4 && op == "copy_lhs") {
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
      int64_t x_length = 1;
      for (int i = 1; i < ufeat->ndim; ++i)
        x_length *= ufeat->shape[i];
      cusparse::CusparseCsrmm2<DType>(
          ufeat->ctx, csr,
          static_cast<DType*>(ufeat->data),
          nullptr,
          static_cast<DType*>(out->data),
          x_length);
    } else if (sizeof(IdType) == 4 && op == "mul" && efeat.NumElements() == csr.indices->shape[0]) {
      int64_t x_length = 1;
      for (int i = 1; i < ufeat->ndim; ++i)
        x_length *= ufeat->shape[i];
      if (!IsNullArray(csr.data))
        efeat = IndexSelect(efeat, csr.data);
      cusparse::CusparseCsrmm2<DType>(
          ufeat->ctx, csr,
          static_cast<DType*>(ufeat->data),
          static_cast<DType*>(efeat->data),
          static_cast<DType*>(out->data),
          x_length);
    } else {
      SWITCH_OP(op, Op, {
        cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Sum<IdType, DType> >(
            bcast, csr, ufeat, efeat, out, NullArray(), NullArray());
      });
    }
  } else if (reduce == "max") {
    SWITCH_OP(op, Op, {
      cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Max<IdType, DType> >(
          bcast, csr, ufeat, efeat, out, out_aux[0], out_aux[1]);
    });
  } else if (reduce == "min") {
    SWITCH_OP(op, Op, {
      cuda::SpMMCsr<IdType, DType, Op, cuda::reduce::Min<IdType, DType> >(
          bcast, csr, ufeat, efeat, out, out_aux[0], out_aux[1]);
    });
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

/*!
 * \brief CUDA implementation of g-SpMM on Coo format.
 */
template <int XPU, typename IdType, typename DType>
void SpMMCoo(const std::string& op, const std::string& reduce,
             const BcastOff& bcast,
             const COOMatrix& coo,
             NDArray ufeat,
             NDArray efeat,
             NDArray out,
             std::vector<NDArray> out_aux) {
  if (reduce == "sum") {
    SWITCH_OP(op, Op, {
      cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Sum<IdType, DType, true> > (
          bcast, coo, ufeat, efeat, out, NullArray(), NullArray());
    });
  } else if (reduce == "max") {
    SWITCH_OP(op, Op, {
      cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Max<IdType, DType, true> > (
          bcast, coo, ufeat, efeat, out, out_aux[0], out_aux[1]);
    });
  }  else if (reduce == "min") {
    SWITCH_OP(op, Op, {
      cuda::SpMMCoo<IdType, DType, Op, cuda::reduce::Min<IdType, DType, true> > (
          bcast, coo, ufeat, efeat, out, out_aux[0], out_aux[1]);
    });
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

template void SpMMCsr<kDLGPU, int32_t, float>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCsr<kDLGPU, int64_t, float>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCsr<kDLGPU, int32_t, double>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCsr<kDLGPU, int64_t, double>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);

template void SpMMCoo<kDLGPU, int32_t, float>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCoo<kDLGPU, int64_t, float>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCoo<kDLGPU, int32_t, double>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);
template void SpMMCoo<kDLGPU, int64_t, double>(
    const std::string& op, const std::string& reduce,
    const BcastOff& bcast, const COOMatrix& coo,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux);

}  // namespace aten
}  // namespace dgl