train.py 4.15 KB
Newer Older
1
2
3
import argparse
import time

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
4
5
import dgl

Aymen Waheb's avatar
Aymen Waheb committed
6
7
8
9
10
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from appnp import APPNP
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
11
12
13
14
15
16
from dgl.data import (
    CiteseerGraphDataset,
    CoraGraphDataset,
    PubmedGraphDataset,
    register_data_args,
)
17

18

Aymen Waheb's avatar
Aymen Waheb committed
19
20
21
22
23
24
25
26
27
28
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

29

Aymen Waheb's avatar
Aymen Waheb committed
30
31
def main(args):
    # load and preprocess dataset
32
    if args.dataset == "cora":
33
        data = CoraGraphDataset()
34
    elif args.dataset == "citeseer":
35
        data = CiteseerGraphDataset()
36
    elif args.dataset == "pubmed":
37
        data = PubmedGraphDataset()
38
    else:
39
        raise ValueError("Unknown dataset: {}".format(args.dataset))
40
41
42
43
44
45
46
47

    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.to(args.gpu)

48
49
50
51
52
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
Aymen Waheb's avatar
Aymen Waheb committed
53
54
    in_feats = features.shape[1]
    n_classes = data.num_labels
55
    n_edges = g.number_of_edges()
56
57
    print(
        """----Data statistics------'
Aymen Waheb's avatar
Aymen Waheb committed
58
59
60
61
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
62
63
64
65
66
67
68
69
70
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            train_mask.int().sum().item(),
            val_mask.int().sum().item(),
            test_mask.int().sum().item(),
        )
    )
Aymen Waheb's avatar
Aymen Waheb committed
71
72
73

    n_edges = g.number_of_edges()
    # add self loop
74
75
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
76

Aymen Waheb's avatar
Aymen Waheb committed
77
    # create APPNP model
78
79
80
81
82
83
84
85
86
87
88
    model = APPNP(
        g,
        in_feats,
        args.hidden_sizes,
        n_classes,
        F.relu,
        args.in_drop,
        args.edge_drop,
        args.alpha,
        args.k,
    )
Aymen Waheb's avatar
Aymen Waheb committed
89
90
91
92
93
94

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
95
96
97
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
Aymen Waheb's avatar
Aymen Waheb committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
117
118
119
120
121
122
123
124
125
126
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
            "ETputs(KTEPS) {:.2f}".format(
                epoch,
                np.mean(dur),
                loss.item(),
                acc,
                n_edges / np.mean(dur) / 1000,
            )
        )
Aymen Waheb's avatar
Aymen Waheb committed
127
128
129
130
131
132

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


133
134
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="APPNP")
Aymen Waheb's avatar
Aymen Waheb committed
135
    register_data_args(parser)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    parser.add_argument(
        "--in-drop", type=float, default=0.5, help="input feature dropout"
    )
    parser.add_argument(
        "--edge-drop", type=float, default=0.5, help="edge propagation dropout"
    )
    parser.add_argument("--gpu", type=int, default=-1, help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
    parser.add_argument(
        "--n-epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--hidden_sizes",
        type=int,
        nargs="+",
        default=[64],
        help="hidden unit sizes for appnp",
    )
    parser.add_argument(
        "--k", type=int, default=10, help="Number of propagation steps"
    )
    parser.add_argument(
        "--alpha", type=float, default=0.1, help="Teleport Probability"
    )
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
    )
Aymen Waheb's avatar
Aymen Waheb committed
163
164
165
166
    args = parser.parse_args()
    print(args)

    main(args)