train.py 4.54 KB
Newer Older
Aymen Waheb's avatar
Aymen Waheb committed
1
2
3
4
5
6
7
8
9
10
import argparse, time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl
from appnp import APPNP

11

Aymen Waheb's avatar
Aymen Waheb committed
12
13
14
15
16
17
18
19
20
21
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

22

Aymen Waheb's avatar
Aymen Waheb committed
23
24
25
26
27
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
28
29
30
31
32
33
34
35
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
Aymen Waheb's avatar
Aymen Waheb committed
36
37
38
39
40
41
42
43
44
45
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
Zihao Ye's avatar
Zihao Ye committed
46
47
48
           train_mask.int().sum().item(),
           val_mask.int().sum().item(),
           test_mask.int().sum().item()))
Aymen Waheb's avatar
Aymen Waheb committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)

    # create APPNP model
    model = APPNP(g,
                  in_feats,
                  args.hidden_sizes,
                  n_classes,
                  F.relu,
75
76
                  args.in_drop,
                  args.edge_drop,
Aymen Waheb's avatar
Aymen Waheb committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
                  args.alpha,
                  args.k)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
108
109
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))
Aymen Waheb's avatar
Aymen Waheb committed
110
111
112
113
114
115
116
117
118

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='APPNP')
    register_data_args(parser)
119
120
121
122
    parser.add_argument("--in-drop", type=float, default=0.5,
                        help="input feature dropout")
    parser.add_argument("--edge-drop", type=float, default=0.5,
                        help="edge propagation dropout")
Aymen Waheb's avatar
Aymen Waheb committed
123
    parser.add_argument("--gpu", type=int, default=-1,
124
                        help="gpu")
Aymen Waheb's avatar
Aymen Waheb committed
125
    parser.add_argument("--lr", type=float, default=1e-2,
126
                        help="learning rate")
Aymen Waheb's avatar
Aymen Waheb committed
127
    parser.add_argument("--n-epochs", type=int, default=200,
128
                        help="number of training epochs")
Aymen Waheb's avatar
Aymen Waheb committed
129
    parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64],
130
                        help="hidden unit sizes for appnp")
Aymen Waheb's avatar
Aymen Waheb committed
131
    parser.add_argument("--k", type=int, default=10,
132
                        help="Number of propagation steps")
Aymen Waheb's avatar
Aymen Waheb committed
133
    parser.add_argument("--alpha", type=float, default=0.1,
134
                        help="Teleport Probability")
Aymen Waheb's avatar
Aymen Waheb committed
135
    parser.add_argument("--weight-decay", type=float, default=5e-4,
136
                        help="Weight for L2 loss")
Aymen Waheb's avatar
Aymen Waheb committed
137
138
139
140
    args = parser.parse_args()
    print(args)

    main(args)