train_sampling.py 16.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
"""Training GCMC model on the MovieLens data set by mini-batch sampling.

The script loads the full graph in CPU and samples subgraphs for computing
gradients on the training device. The script also supports multi-GPU for
further acceleration.
"""
import os, time
import argparse
import logging
import random
import string
import traceback
import numpy as np
14
import tqdm
15
16
17
18
19
import torch as th
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from data import MovieLens
20
from model import GCMCLayer, DenseBiDecoder, BiDecoder
21
from utils import get_activation, get_optimizer, torch_total_param_num, torch_net_info, MetricLogger, to_etype_name
22
import dgl
23
import torch.multiprocessing as mp
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

class Net(nn.Module):
    def __init__(self, args, dev_id):
        super(Net, self).__init__()
        self._act = get_activation(args.model_activation)
        self.encoder = GCMCLayer(args.rating_vals,
                                 args.src_in_units,
                                 args.dst_in_units,
                                 args.gcn_agg_units,
                                 args.gcn_out_units,
                                 args.gcn_dropout,
                                 args.gcn_agg_accum,
                                 agg_act=self._act,
                                 share_user_item_param=args.share_param,
                                 device=dev_id)
        if args.mix_cpu_gpu and args.use_one_hot_fea:
            # if use_one_hot_fea, user and movie feature is None
            # W can be extremely large, with mix_cpu_gpu W should be stored in CPU
            self.encoder.partial_to(dev_id)
        else:
            self.encoder.to(dev_id)

46
47
48
        self.decoder = BiDecoder(in_units=args.gcn_out_units,
                                 num_classes=len(args.rating_vals),
                                 num_basis=args.gen_r_num_basis_func)
49
50
51
52
        self.decoder.to(dev_id)

    def forward(self, compact_g, frontier, ufeat, ifeat, possible_rating_values):
        user_out, movie_out = self.encoder(frontier, ufeat, ifeat)
53
        pred_ratings = self.decoder(compact_g, user_out, movie_out)
54
55
        return pred_ratings

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def load_subtensor(input_nodes, pair_graph, blocks, dataset, parent_graph):
    output_nodes = pair_graph.ndata[dgl.NID]
    head_feat = input_nodes['user'] if dataset.user_feature is None else \
                dataset.user_feature[input_nodes['user']]
    tail_feat = input_nodes['movie'] if dataset.movie_feature is None else \
                dataset.movie_feature[input_nodes['movie']]

    for block in blocks:
        block.dstnodes['user'].data['ci'] = \
            parent_graph.nodes['user'].data['ci'][block.dstnodes['user'].data[dgl.NID]]
        block.srcnodes['user'].data['cj'] = \
            parent_graph.nodes['user'].data['cj'][block.srcnodes['user'].data[dgl.NID]]
        block.dstnodes['movie'].data['ci'] = \
            parent_graph.nodes['movie'].data['ci'][block.dstnodes['movie'].data[dgl.NID]]
        block.srcnodes['movie'].data['cj'] = \
            parent_graph.nodes['movie'].data['cj'][block.srcnodes['movie'].data[dgl.NID]]

    return head_feat, tail_feat, blocks

def flatten_etypes(pair_graph, dataset, segment):
    n_users = pair_graph.number_of_nodes('user')
    n_movies = pair_graph.number_of_nodes('movie')
    src = []
    dst = []
    labels = []
    ratings = []

    for rating in dataset.possible_rating_values:
        src_etype, dst_etype = pair_graph.edges(order='eid', etype=to_etype_name(rating))
        src.append(src_etype)
        dst.append(dst_etype)
        label = np.searchsorted(dataset.possible_rating_values, rating)
        ratings.append(th.LongTensor(np.full_like(src_etype, rating)))
        labels.append(th.LongTensor(np.full_like(src_etype, label)))
    src = th.cat(src)
    dst = th.cat(dst)
    ratings = th.cat(ratings)
    labels = th.cat(labels)

    flattened_pair_graph = dgl.heterograph({
        ('user', 'rate', 'movie'): (src, dst)},
        num_nodes_dict={'user': n_users, 'movie': n_movies})
    flattened_pair_graph.edata['rating'] = ratings
    flattened_pair_graph.edata['label'] = labels

    return flattened_pair_graph

103
104
105
106
107
108
def evaluate(args, dev_id, net, dataset, dataloader, segment='valid'):
    possible_rating_values = dataset.possible_rating_values
    nd_possible_rating_values = th.FloatTensor(possible_rating_values).to(dev_id)

    real_pred_ratings = []
    true_rel_ratings = []
109
110
111
112
113
114
115
116
    for input_nodes, pair_graph, blocks in dataloader:
        head_feat, tail_feat, blocks = load_subtensor(
            input_nodes, pair_graph, blocks, dataset,
            dataset.valid_enc_graph if segment == 'valid' else dataset.test_enc_graph)
        frontier = blocks[0]
        true_relation_ratings = \
            dataset.valid_truths[pair_graph.edata[dgl.EID]] if segment == 'valid' else \
            dataset.test_truths[pair_graph.edata[dgl.EID]]
117

118
        frontier = frontier.to(dev_id)
119
120
        head_feat = head_feat.to(dev_id)
        tail_feat = tail_feat.to(dev_id)
Mufei Li's avatar
Mufei Li committed
121
        pair_graph = pair_graph.to(dev_id)
122
        with th.no_grad():
123
            pred_ratings = net(pair_graph, frontier,
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                               head_feat, tail_feat, possible_rating_values)
        batch_pred_ratings = (th.softmax(pred_ratings, dim=1) *
                         nd_possible_rating_values.view(1, -1)).sum(dim=1)
        real_pred_ratings.append(batch_pred_ratings)
        true_rel_ratings.append(true_relation_ratings)

    real_pred_ratings = th.cat(real_pred_ratings, dim=0)
    true_rel_ratings = th.cat(true_rel_ratings, dim=0).to(dev_id)
    rmse = ((real_pred_ratings - true_rel_ratings) ** 2.).mean().item()
    rmse = np.sqrt(rmse)
    return rmse

def config():
    parser = argparse.ArgumentParser(description='GCMC')
    parser.add_argument('--seed', default=123, type=int)
    parser.add_argument('--gpu', type=str, default='0')
    parser.add_argument('--save_dir', type=str, help='The saving directory')
    parser.add_argument('--save_id', type=int, help='The saving log id')
    parser.add_argument('--silent', action='store_true')
    parser.add_argument('--data_name', default='ml-1m', type=str,
                        help='The dataset name: ml-100k, ml-1m, ml-10m')
    parser.add_argument('--data_test_ratio', type=float, default=0.1) ## for ml-100k the test ration is 0.2
    parser.add_argument('--data_valid_ratio', type=float, default=0.1)
    parser.add_argument('--use_one_hot_fea', action='store_true', default=False)
    parser.add_argument('--model_activation', type=str, default="leaky")
    parser.add_argument('--gcn_dropout', type=float, default=0.7)
    parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True)
    parser.add_argument('--gcn_agg_units', type=int, default=500)
    parser.add_argument('--gcn_agg_accum', type=str, default="sum")
    parser.add_argument('--gcn_out_units', type=int, default=75)
    parser.add_argument('--gen_r_num_basis_func', type=int, default=2)
    parser.add_argument('--train_max_epoch', type=int, default=1000)
    parser.add_argument('--train_log_interval', type=int, default=1)
    parser.add_argument('--train_valid_interval', type=int, default=1)
    parser.add_argument('--train_optimizer', type=str, default="adam")
    parser.add_argument('--train_grad_clip', type=float, default=1.0)
    parser.add_argument('--train_lr', type=float, default=0.01)
    parser.add_argument('--train_min_lr', type=float, default=0.0001)
    parser.add_argument('--train_lr_decay_factor', type=float, default=0.5)
    parser.add_argument('--train_decay_patience', type=int, default=25)
    parser.add_argument('--train_early_stopping_patience', type=int, default=50)
    parser.add_argument('--share_param', default=False, action='store_true')
    parser.add_argument('--mix_cpu_gpu', default=False, action='store_true')
    parser.add_argument('--minibatch_size', type=int, default=20000)
    parser.add_argument('--num_workers_per_gpu', type=int, default=8)

    args = parser.parse_args()
    ### configure save_fir to save all the info
    if args.save_dir is None:
        args.save_dir = args.data_name+"_" + ''.join(random.choices(string.ascii_uppercase + string.digits, k=2))
    if args.save_id is None:
        args.save_id = np.random.randint(20)
    args.save_dir = os.path.join("log", args.save_dir)
    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

    return args

def run(proc_id, n_gpus, args, devices, dataset):
    dev_id = devices[proc_id]
184
185
186
187
188
189
190
191
192
193
194
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)
    if n_gpus > 0:
        th.cuda.set_device(dev_id)

195
196
197
198
    train_labels = dataset.train_labels
    train_truths = dataset.train_truths
    num_edges = train_truths.shape[0]

199
200
201
202
    reverse_types = {to_etype_name(k): 'rev-' + to_etype_name(k)
                     for k in dataset.possible_rating_values}
    reverse_types.update({v: k for k, v in reverse_types.items()})
    sampler = dgl.dataloading.MultiLayerNeighborSampler([None], return_eids=True)
203
204
    sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
    dataloader = dgl.dataloading.DataLoader(
205
206
207
208
209
        dataset.train_enc_graph,
        {to_etype_name(k): th.arange(
            dataset.train_enc_graph.number_of_edges(etype=to_etype_name(k)))
         for k in dataset.possible_rating_values},
        sampler,
210
        use_ddp=n_gpus > 1,
211
212
        batch_size=args.minibatch_size,
        shuffle=True,
213
        drop_last=False)
214
215

    if proc_id == 0:
216
        valid_dataloader = dgl.dataloading.DataLoader(
217
218
219
220
221
222
223
            dataset.valid_dec_graph,
            th.arange(dataset.valid_dec_graph.number_of_edges()),
            sampler,
            g_sampling=dataset.valid_enc_graph,
            batch_size=args.minibatch_size,
            shuffle=False,
            drop_last=False)
224
        test_dataloader = dgl.dataloading.DataLoader(
225
226
227
228
229
230
231
            dataset.test_dec_graph,
            th.arange(dataset.test_dec_graph.number_of_edges()),
            sampler,
            g_sampling=dataset.test_enc_graph,
            batch_size=args.minibatch_size,
            shuffle=False,
            drop_last=False)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

    nd_possible_rating_values = \
        th.FloatTensor(dataset.possible_rating_values)
    nd_possible_rating_values = nd_possible_rating_values.to(dev_id)

    net = Net(args=args, dev_id=dev_id)
    net = net.to(dev_id)
    if n_gpus > 1:
        net = DistributedDataParallel(net, device_ids=[dev_id], output_device=dev_id)
    rating_loss_net = nn.CrossEntropyLoss()
    learning_rate = args.train_lr
    optimizer = get_optimizer(args.train_optimizer)(net.parameters(), lr=learning_rate)
    print("Loading network finished ...\n")

    ### declare the loss information
    best_valid_rmse = np.inf
    no_better_valid = 0
    best_epoch = -1
    count_rmse = 0
    count_num = 0
    count_loss = 0
    print("Start training ...")
    dur = []
    iter_idx = 1

    for epoch in range(1, args.train_max_epoch):
258
259
        if n_gpus > 1:
            dataloader.set_epoch(epoch)
260
261
262
        if epoch > 1:
            t0 = time.time()
        net.train()
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        with tqdm.tqdm(dataloader) as tq:
            for step, (input_nodes, pair_graph, blocks) in enumerate(tq):
                head_feat, tail_feat, blocks = load_subtensor(
                    input_nodes, pair_graph, blocks, dataset, dataset.train_enc_graph)
                frontier = blocks[0]
                compact_g = flatten_etypes(pair_graph, dataset, 'train').to(dev_id)
                true_relation_labels = compact_g.edata['label']
                true_relation_ratings = compact_g.edata['rating']

                head_feat = head_feat.to(dev_id)
                tail_feat = tail_feat.to(dev_id)
                frontier = frontier.to(dev_id)

                pred_ratings = net(compact_g, frontier, head_feat, tail_feat, dataset.possible_rating_values)
                loss = rating_loss_net(pred_ratings, true_relation_labels.to(dev_id)).mean()
                count_loss += loss.item()
                optimizer.zero_grad()
                loss.backward()
                nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip)
                optimizer.step()

                if proc_id == 0 and iter_idx == 1:
                    print("Total #Param of net: %d" % (torch_total_param_num(net)))

                real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
                                    nd_possible_rating_values.view(1, -1)).sum(dim=1)
                rmse = ((real_pred_ratings - true_relation_ratings.to(dev_id)) ** 2).sum()
                count_rmse += rmse.item()
                count_num += pred_ratings.shape[0]

                tq.set_postfix({'loss': '{:.4f}'.format(count_loss / iter_idx),
                                'rmse': '{:.4f}'.format(count_rmse / count_num)},
                               refresh=False)

                iter_idx += 1

299
300
301
302
303
304
305
306
307
308
309
310
311
312
        if epoch > 1:
            epoch_time = time.time() - t0
            print("Epoch {} time {}".format(epoch, epoch_time))

        if epoch % args.train_valid_interval == 0:
            if n_gpus > 1:
                th.distributed.barrier()
            if proc_id == 0:
                valid_rmse = evaluate(args=args,
                                      dev_id=dev_id,
                                      net=net,
                                      dataset=dataset,
                                      dataloader=valid_dataloader,
                                      segment='valid')
Mufei Li's avatar
Mufei Li committed
313
                logging_str = 'Val RMSE={:.4f}'.format(valid_rmse)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

                if valid_rmse < best_valid_rmse:
                    best_valid_rmse = valid_rmse
                    no_better_valid = 0
                    best_epoch = epoch
                    test_rmse = evaluate(args=args,
                                         dev_id=dev_id,
                                         net=net,
                                         dataset=dataset,
                                         dataloader=test_dataloader,
                                         segment='test')
                    best_test_rmse = test_rmse
                    logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
                else:
                    no_better_valid += 1
                    if no_better_valid > args.train_early_stopping_patience\
                        and learning_rate <= args.train_min_lr:
                        logging.info("Early stopping threshold reached. Stop training.")
                        break
                    if no_better_valid > args.train_decay_patience:
                        new_lr = max(learning_rate * args.train_lr_decay_factor, args.train_min_lr)
                        if new_lr < learning_rate:
                            logging.info("\tChange the LR to %g" % new_lr)
                            learning_rate = new_lr
                            for p in optimizer.param_groups:
                                p['lr'] = learning_rate
                            no_better_valid = 0
                            print("Change the LR to %g" % new_lr)
            # sync on evalution
            if n_gpus > 1:
                th.distributed.barrier()

346
347
        if proc_id == 0:
            print(logging_str)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    if proc_id == 0:
        print('Best epoch Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.format(
              best_epoch, best_valid_rmse, best_test_rmse))

if __name__ == '__main__':
    args = config()

    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # For GCMC based on sampling, we require node has its own features.
    # Otherwise (node_id is the feature), the model can not scale
    dataset = MovieLens(args.data_name,
                        'cpu',
                        mix_cpu_gpu=args.mix_cpu_gpu,
                        use_one_hot_fea=args.use_one_hot_fea,
                        symm=args.gcn_agg_norm_symm,
                        test_ratio=args.data_test_ratio,
                        valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    args.dst_in_units = dataset.movie_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], dataset)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices, dataset)
    # multi gpu
    else:
381
382
        # Create csr/coo/csc formats before launching training processes with multi-gpu.
        # This avoids creating certain formats in each sub-process, which saves momory and CPU.
383
384
        dataset.train_enc_graph.create_formats_()
        dataset.train_dec_graph.create_formats_()
385
        mp.spawn(run, args=(n_gpus, args, devices, dataset), nprocs=n_gpus)