train_sampling.py 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""Training GCMC model on the MovieLens data set by mini-batch sampling.

The script loads the full graph in CPU and samples subgraphs for computing
gradients on the training device. The script also supports multi-GPU for
further acceleration.
"""
import os, time
import argparse
import logging
import random
import string
import traceback
import numpy as np
import torch as th
import torch.nn as nn
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from _thread import start_new_thread
from functools import wraps
from data import MovieLens
from model import GCMCLayer, DenseBiDecoder
from utils import get_activation, get_optimizer, torch_total_param_num, torch_net_info, MetricLogger
import dgl

class GCMCSampler:
    """Neighbor sampler in GCMC mini-batch training."""
    def __init__(self, dataset, segment='train'):
        self.dataset = dataset
        if segment == 'train':
            self.truths = dataset.train_truths
            self.labels = dataset.train_labels
            self.enc_graph = dataset.train_enc_graph
            self.dec_graph = dataset.train_dec_graph
        elif segment == 'valid':
            self.truths = dataset.valid_truths
            self.labels = None
            self.enc_graph = dataset.valid_enc_graph
            self.dec_graph = dataset.valid_dec_graph
        elif segment == 'test':
            self.truths = dataset.test_truths
            self.labels = None
            self.enc_graph = dataset.test_enc_graph
            self.dec_graph = dataset.test_dec_graph
        else:
            assert False, "Unknow dataset {}".format(segment)

    def sample_blocks(self, seeds):
        """Sample subgraphs from the entire graph.

        The input ``seeds`` represents the edges to compute prediction for. The sampling
        algorithm works as follows:
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
          1. Get the head and tail nodes of the provided seed edges.
          2. For each head and tail node, extract the entire in-coming neighborhood.
          3. Copy the node features/embeddings from the full graph to the sampled subgraphs.
        """
        dataset = self.dataset
        enc_graph = self.enc_graph
        dec_graph = self.dec_graph
        edge_ids = th.stack(seeds)
        # generate frontiers for user and item
        possible_rating_values = dataset.possible_rating_values
        true_relation_ratings = self.truths[edge_ids]
        true_relation_labels = None if self.labels is None else self.labels[edge_ids]

        # 1. Get the head and tail nodes from both the decoder and encoder graphs.
        head_id, tail_id = dec_graph.find_edges(edge_ids)
        utype, _, vtype = enc_graph.canonical_etypes[0]
        subg = []
        true_rel_ratings = []
        true_rel_labels = []
        for possible_rating_value in possible_rating_values:
            idx_loc = (true_relation_ratings == possible_rating_value)
            head = head_id[idx_loc]
            tail = tail_id[idx_loc]
            true_rel_ratings.append(true_relation_ratings[idx_loc])
            if self.labels is not None:
                true_rel_labels.append(true_relation_labels[idx_loc])
            subg.append(dgl.bipartite((head, tail),
                                        utype=utype,
                                        etype=str(possible_rating_value),
                                        vtype=vtype,
                                        num_nodes=(enc_graph.number_of_nodes(utype),
                                                   enc_graph.number_of_nodes(vtype))))
        # Convert the encoder subgraph to a more compact one by removing nodes that covered
        # by the seed edges.
        g = dgl.hetero_from_relations(subg)
        g = dgl.compact_graphs(g)

        # 2. For each head and tail node, extract the entire in-coming neighborhood.
        seed_nodes = {}
        for ntype in g.ntypes:
            seed_nodes[ntype] = g.nodes[ntype].data[dgl.NID]
        frontier = dgl.in_subgraph(enc_graph, seed_nodes)
        frontier = dgl.to_block(frontier, seed_nodes)

        # 3. Copy the node features/embeddings from the full graph to the sampled subgraphs.
        frontier.dstnodes['user'].data['ci'] = \
            enc_graph.nodes['user'].data['ci'][frontier.dstnodes['user'].data[dgl.NID]]
        frontier.srcnodes['movie'].data['cj'] = \
            enc_graph.nodes['movie'].data['cj'][frontier.srcnodes['movie'].data[dgl.NID]]
        frontier.srcnodes['user'].data['cj'] = \
            enc_graph.nodes['user'].data['cj'][frontier.srcnodes['user'].data[dgl.NID]]
        frontier.dstnodes['movie'].data['ci'] = \
            enc_graph.nodes['movie'].data['ci'][frontier.dstnodes['movie'].data[dgl.NID]]

        # handle features
        head_feat = frontier.srcnodes['user'].data[dgl.NID].long() \
                    if dataset.user_feature is None else \
                       dataset.user_feature[frontier.srcnodes['user'].data[dgl.NID]]
        tail_feat = frontier.srcnodes['movie'].data[dgl.NID].long()\
                    if dataset.movie_feature is None else \
                       dataset.movie_feature[frontier.srcnodes['movie'].data[dgl.NID]]

        true_rel_labels = None if self.labels is None else th.cat(true_rel_labels, dim=0)
        true_rel_ratings = th.cat(true_rel_ratings, dim=0)
        return (g, frontier, head_feat, tail_feat, true_rel_labels, true_rel_ratings)

class Net(nn.Module):
    def __init__(self, args, dev_id):
        super(Net, self).__init__()
        self._act = get_activation(args.model_activation)
        self.encoder = GCMCLayer(args.rating_vals,
                                 args.src_in_units,
                                 args.dst_in_units,
                                 args.gcn_agg_units,
                                 args.gcn_out_units,
                                 args.gcn_dropout,
                                 args.gcn_agg_accum,
                                 agg_act=self._act,
                                 share_user_item_param=args.share_param,
                                 device=dev_id)
        if args.mix_cpu_gpu and args.use_one_hot_fea:
            # if use_one_hot_fea, user and movie feature is None
            # W can be extremely large, with mix_cpu_gpu W should be stored in CPU
            self.encoder.partial_to(dev_id)
        else:
            self.encoder.to(dev_id)

        self.decoder = DenseBiDecoder(in_units=args.gcn_out_units,
                                      num_classes=len(args.rating_vals),
                                      num_basis=args.gen_r_num_basis_func)
        self.decoder.to(dev_id)

    def forward(self, compact_g, frontier, ufeat, ifeat, possible_rating_values):
        user_out, movie_out = self.encoder(frontier, ufeat, ifeat)

        head_emb = []
        tail_emb = []
        for possible_rating_value in possible_rating_values:
            head, tail = compact_g.all_edges(etype=str(possible_rating_value))
            head_emb.append(user_out[head])
            tail_emb.append(movie_out[tail])

        head_emb = th.cat(head_emb, dim=0)
        tail_emb = th.cat(tail_emb, dim=0)

        pred_ratings = self.decoder(head_emb, tail_emb)
        return pred_ratings

def evaluate(args, dev_id, net, dataset, dataloader, segment='valid'):
    possible_rating_values = dataset.possible_rating_values
    nd_possible_rating_values = th.FloatTensor(possible_rating_values).to(dev_id)

    real_pred_ratings = []
    true_rel_ratings = []
    for sample_data in dataloader:
        compact_g, frontier, head_feat, tail_feat, \
                _, true_relation_ratings = sample_data

173
        frontier = frontier.to(dev_id)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        head_feat = head_feat.to(dev_id)
        tail_feat = tail_feat.to(dev_id)
        with th.no_grad():
            pred_ratings = net(compact_g, frontier,
                               head_feat, tail_feat, possible_rating_values)
        batch_pred_ratings = (th.softmax(pred_ratings, dim=1) *
                         nd_possible_rating_values.view(1, -1)).sum(dim=1)
        real_pred_ratings.append(batch_pred_ratings)
        true_rel_ratings.append(true_relation_ratings)

    real_pred_ratings = th.cat(real_pred_ratings, dim=0)
    true_rel_ratings = th.cat(true_rel_ratings, dim=0).to(dev_id)
    rmse = ((real_pred_ratings - true_rel_ratings) ** 2.).mean().item()
    rmse = np.sqrt(rmse)
    return rmse

# According to https://github.com/pytorch/pytorch/issues/17199, this decorator
# is necessary to make fork() and openmp work together.
def thread_wrapped_func(func):
    """
    Wraps a process entry point to make it work with OpenMP.
    """
    @wraps(func)
    def decorated_function(*args, **kwargs):
        queue = Queue()
        def _queue_result():
            exception, trace, res = None, None, None
            try:
                res = func(*args, **kwargs)
            except Exception as e:
                exception = e
                trace = traceback.format_exc()
            queue.put((res, exception, trace))

        start_new_thread(_queue_result, ())
        result, exception, trace = queue.get()
        if exception is None:
            return result
        else:
            assert isinstance(exception, Exception)
            raise exception.__class__(trace)
    return decorated_function

def config():
    parser = argparse.ArgumentParser(description='GCMC')
    parser.add_argument('--seed', default=123, type=int)
    parser.add_argument('--gpu', type=str, default='0')
    parser.add_argument('--save_dir', type=str, help='The saving directory')
    parser.add_argument('--save_id', type=int, help='The saving log id')
    parser.add_argument('--silent', action='store_true')
    parser.add_argument('--data_name', default='ml-1m', type=str,
                        help='The dataset name: ml-100k, ml-1m, ml-10m')
    parser.add_argument('--data_test_ratio', type=float, default=0.1) ## for ml-100k the test ration is 0.2
    parser.add_argument('--data_valid_ratio', type=float, default=0.1)
    parser.add_argument('--use_one_hot_fea', action='store_true', default=False)
    parser.add_argument('--model_activation', type=str, default="leaky")
    parser.add_argument('--gcn_dropout', type=float, default=0.7)
    parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True)
    parser.add_argument('--gcn_agg_units', type=int, default=500)
    parser.add_argument('--gcn_agg_accum', type=str, default="sum")
    parser.add_argument('--gcn_out_units', type=int, default=75)
    parser.add_argument('--gen_r_num_basis_func', type=int, default=2)
    parser.add_argument('--train_max_epoch', type=int, default=1000)
    parser.add_argument('--train_log_interval', type=int, default=1)
    parser.add_argument('--train_valid_interval', type=int, default=1)
    parser.add_argument('--train_optimizer', type=str, default="adam")
    parser.add_argument('--train_grad_clip', type=float, default=1.0)
    parser.add_argument('--train_lr', type=float, default=0.01)
    parser.add_argument('--train_min_lr', type=float, default=0.0001)
    parser.add_argument('--train_lr_decay_factor', type=float, default=0.5)
    parser.add_argument('--train_decay_patience', type=int, default=25)
    parser.add_argument('--train_early_stopping_patience', type=int, default=50)
    parser.add_argument('--share_param', default=False, action='store_true')
    parser.add_argument('--mix_cpu_gpu', default=False, action='store_true')
    parser.add_argument('--minibatch_size', type=int, default=20000)
    parser.add_argument('--num_workers_per_gpu', type=int, default=8)

    args = parser.parse_args()
    ### configure save_fir to save all the info
    if args.save_dir is None:
        args.save_dir = args.data_name+"_" + ''.join(random.choices(string.ascii_uppercase + string.digits, k=2))
    if args.save_id is None:
        args.save_id = np.random.randint(20)
    args.save_dir = os.path.join("log", args.save_dir)
    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

    return args

@thread_wrapped_func
def run(proc_id, n_gpus, args, devices, dataset):
    dev_id = devices[proc_id]
    train_labels = dataset.train_labels
    train_truths = dataset.train_truths
    num_edges = train_truths.shape[0]
    sampler = GCMCSampler(dataset,
                          'train')

    seeds = th.arange(num_edges)
    dataloader = DataLoader(
        dataset=seeds,
        batch_size=args.minibatch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        pin_memory=True,
        drop_last=False,
        num_workers=args.num_workers_per_gpu)

    if proc_id == 0:
        valid_sampler = GCMCSampler(dataset,
                                    'valid')
        valid_seeds = th.arange(dataset.valid_truths.shape[0])
        valid_dataloader = DataLoader(dataset=valid_seeds,
                                      batch_size=args.minibatch_size,
                                      collate_fn=valid_sampler.sample_blocks,
                                      shuffle=False,
                                      pin_memory=True,
                                      drop_last=False,
                                      num_workers=args.num_workers_per_gpu)

        test_sampler = GCMCSampler(dataset,
                                   'test')
        test_seeds = th.arange(dataset.test_truths.shape[0])
        test_dataloader = DataLoader(dataset=test_seeds,
                                     batch_size=args.minibatch_size,
                                     collate_fn=test_sampler.sample_blocks,
                                     shuffle=False,
                                     pin_memory=True,
                                     drop_last=False,
                                     num_workers=args.num_workers_per_gpu)

    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)
    if n_gpus > 0:
        th.cuda.set_device(dev_id)

    nd_possible_rating_values = \
        th.FloatTensor(dataset.possible_rating_values)
    nd_possible_rating_values = nd_possible_rating_values.to(dev_id)

    net = Net(args=args, dev_id=dev_id)
    net = net.to(dev_id)
    if n_gpus > 1:
        net = DistributedDataParallel(net, device_ids=[dev_id], output_device=dev_id)
    rating_loss_net = nn.CrossEntropyLoss()
    learning_rate = args.train_lr
    optimizer = get_optimizer(args.train_optimizer)(net.parameters(), lr=learning_rate)
    print("Loading network finished ...\n")

    ### declare the loss information
    best_valid_rmse = np.inf
    no_better_valid = 0
    best_epoch = -1
    count_rmse = 0
    count_num = 0
    count_loss = 0
    print("Start training ...")
    dur = []
    iter_idx = 1

    for epoch in range(1, args.train_max_epoch):
        if epoch > 1:
            t0 = time.time()
        net.train()
344
        for step, sample_data in enumerate(dataloader):
345
346
347
348
            compact_g, frontier, head_feat, tail_feat, \
                true_relation_labels, true_relation_ratings = sample_data
            head_feat = head_feat.to(dev_id)
            tail_feat = tail_feat.to(dev_id)
349
            frontier = frontier.to(dev_id)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

            pred_ratings = net(compact_g, frontier, head_feat, tail_feat, dataset.possible_rating_values)
            loss = rating_loss_net(pred_ratings, true_relation_labels.to(dev_id)).mean()
            count_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip)
            optimizer.step()

            if proc_id == 0 and iter_idx == 1:
                print("Total #Param of net: %d" % (torch_total_param_num(net)))

            real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
                                nd_possible_rating_values.view(1, -1)).sum(dim=1)
            rmse = ((real_pred_ratings - true_relation_ratings.to(dev_id)) ** 2).sum()
            count_rmse += rmse.item()
            count_num += pred_ratings.shape[0]

            if iter_idx % args.train_log_interval == 0:
                logging_str = "Iter={}, loss={:.4f}, rmse={:.4f}".format(
                    iter_idx, count_loss/iter_idx, count_rmse/count_num)
                count_rmse = 0
                count_num = 0

            if iter_idx % args.train_log_interval == 0:
                print("[{}] {}".format(proc_id, logging_str))

            iter_idx += 1
        if epoch > 1:
            epoch_time = time.time() - t0
            print("Epoch {} time {}".format(epoch, epoch_time))

        if epoch % args.train_valid_interval == 0:
            if n_gpus > 1:
                th.distributed.barrier()
            if proc_id == 0:
                valid_rmse = evaluate(args=args,
                                      dev_id=dev_id,
                                      net=net,
                                      dataset=dataset,
                                      dataloader=valid_dataloader,
                                      segment='valid')
                logging_str += ',\tVal RMSE={:.4f}'.format(valid_rmse)

                if valid_rmse < best_valid_rmse:
                    best_valid_rmse = valid_rmse
                    no_better_valid = 0
                    best_epoch = epoch
                    test_rmse = evaluate(args=args,
                                         dev_id=dev_id,
                                         net=net,
                                         dataset=dataset,
                                         dataloader=test_dataloader,
                                         segment='test')
                    best_test_rmse = test_rmse
                    logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
                else:
                    no_better_valid += 1
                    if no_better_valid > args.train_early_stopping_patience\
                        and learning_rate <= args.train_min_lr:
                        logging.info("Early stopping threshold reached. Stop training.")
                        break
                    if no_better_valid > args.train_decay_patience:
                        new_lr = max(learning_rate * args.train_lr_decay_factor, args.train_min_lr)
                        if new_lr < learning_rate:
                            logging.info("\tChange the LR to %g" % new_lr)
                            learning_rate = new_lr
                            for p in optimizer.param_groups:
                                p['lr'] = learning_rate
                            no_better_valid = 0
                            print("Change the LR to %g" % new_lr)
            # sync on evalution
            if n_gpus > 1:
                th.distributed.barrier()

        print(logging_str)
    if proc_id == 0:
        print('Best epoch Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.format(
              best_epoch, best_valid_rmse, best_test_rmse))

if __name__ == '__main__':
    args = config()

    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # For GCMC based on sampling, we require node has its own features.
    # Otherwise (node_id is the feature), the model can not scale
    dataset = MovieLens(args.data_name,
                        'cpu',
                        mix_cpu_gpu=args.mix_cpu_gpu,
                        use_one_hot_fea=args.use_one_hot_fea,
                        symm=args.gcn_agg_norm_symm,
                        test_ratio=args.data_test_ratio,
                        valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    args.dst_in_units = dataset.movie_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], dataset)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices, dataset)
    # multi gpu
    else:
459
460
        dataset.train_enc_graph.create_format_()
        dataset.train_dec_graph.create_format_()
461
462
463
464
465
466
467
        procs = []
        for proc_id in range(n_gpus):
            p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices, dataset))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()