README.md 26.4 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
<p align="center">
  <img src="http://data.dgl.ai/asset/logo.jpg" height="200">
</p>
Minjie Wang's avatar
Minjie Wang committed
4

Minjie Wang's avatar
Minjie Wang committed
5
6
[![PyPi Latest Release](https://img.shields.io/pypi/v/dgl.svg)](https://pypi.org/project/dgl/)
[![Conda Latest Release](https://anaconda.org/dglteam/dgl/badges/version.svg)](https://anaconda.org/dglteam/dgl)
Jinjing Zhou's avatar
Jinjing Zhou committed
7
[![Build Status](https://ci.dgl.ai/buildStatus/icon?job=DGL/master)](https://ci.dgl.ai/job/DGL/job/master/)
Minjie Wang's avatar
Minjie Wang committed
8
[![Benchmark by ASV](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://asv.dgl.ai/)
VoVAllen's avatar
VoVAllen committed
9
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](./LICENSE)
zzhang-cn's avatar
zzhang-cn committed
10

11
Documentation ([Latest](https://docs.dgl.ai/en/latest/) | [Stable](https://docs.dgl.ai)) | [DGL at a glance](https://docs.dgl.ai/tutorials/basics/1_first.html#sphx-glr-tutorials-basics-1-first-py) | [Model Tutorials](https://docs.dgl.ai/tutorials/models/index.html) | [Official Examples](examples/README.md) | [Discussion Forum](https://discuss.dgl.ai) | [Slack Channel](https://join.slack.com/t/deep-graph-library/shared_invite/zt-eb4ict1g-xcg3PhZAFAB8p6dtKuP6xQ)
Minjie Wang's avatar
Minjie Wang committed
12

13
**For a full list of official DGL examples, see [here](examples).**
14

Minjie Wang's avatar
Minjie Wang committed
15
DGL is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.
Zheng Zhang's avatar
Zheng Zhang committed
16

Minjie Wang's avatar
Minjie Wang committed
17
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
18
  <img src="http://data.dgl.ai/asset/image/DGL-Arch.png" alt="DGL v0.4 architecture" width="600">
Minjie Wang's avatar
Minjie Wang committed
19
20
21
  <br>
  <b>Figure</b>: DGL Overall Architecture
</p>
22

zhjwy9343's avatar
zhjwy9343 committed
23
## <img src="http://data.dgl.ai/asset/image/new.png" width="30">DGL News
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
24
25
**09/05/2020**: We invite you to participate in the survey [here](https://forms.gle/Ej3jHCocACmb49Gp8) to make DGL better fit for your needs.  Thanks!

26
27
**08/21/2020**: The new **v0.5.0 release** includes distributed GNN training, overhauled documentation and user guide, and several more features.  We have also submitted some models to the [OGB](https://ogb.stanford.edu) leaderboard.  See our [release note](https://github.com/dmlc/dgl/releases/tag/0.5.0) for more details.

28
29
30
**06/11/2020**: Amazon Shanghai AI Lab and AWS Deep Engine Science team working along with academic collaborators from the University of Minnesota, The Ohio State University, and Hunan University have created the **[Drug Repurposing Knowledge Graph (DRKG)](https://github.com/gnn4dr/DRKG)** and a set of machine learning tools, [DGL-KE](https://github.com/awslabs/dgl-ke), that can be used to prioritize drugs for repurposing studies. 
DRKG is a comprehensive biological knowledge graph that relates human genes, compounds, biological processes, drug side effects, diseases and symptoms. DRKG includes, curates, and normalizes information from six publicly available databases and data that were collected from recent publications related to Covid-19. It has 97,238 entities belonging to 13 types of entities, and 5,874,261 triplets belonging to 107 types of relations. 
More about the dataset is in this [blogpost](https://www.dgl.ai/news/2020/06/09/covid.html).
31

Minjie Wang's avatar
Minjie Wang committed
32
## Using DGL
33

34
**A data scientist** may want to apply a pre-trained model to your data right away. For this you can use DGL's [Application packages, formally *Model Zoo*](https://github.com/dmlc/dgl/tree/master/apps). Application packages are developed for domain applications, as is the case for [DGL-LifeScience](https://github.com/awslabs/dgl-lifesci). We will soon add model zoo for knowledge graph embedding learning and recommender systems. Here's how you will use a pretrained model:
Minjie Wang's avatar
Minjie Wang committed
35
```python
36
37
38
from dgllife.data import Tox21
from dgllife.model import load_pretrained
from dgllife.utils import smiles_to_bigraph, CanonicalAtomFeaturizer
zzhang-cn's avatar
zzhang-cn committed
39

Minjie Wang's avatar
Minjie Wang committed
40
dataset = Tox21(smiles_to_bigraph, CanonicalAtomFeaturizer())
41
model = load_pretrained('GCN_Tox21') # Pretrained model loaded
Minjie Wang's avatar
Minjie Wang committed
42
model.eval()
zzhang-cn's avatar
zzhang-cn committed
43

Minjie Wang's avatar
Minjie Wang committed
44
45
46
smiles, g, label, mask = dataset[0]
feats = g.ndata.pop('h')
label_pred = model(g, feats)
47
48
49
50
print(smiles)                   # CCOc1ccc2nc(S(N)(=O)=O)sc2c1
print(label_pred[:, mask != 0]) # Mask non-existing labels
# tensor([[ 1.4190, -0.1820,  1.2974,  1.4416,  0.6914,  
# 2.0957,  0.5919,  0.7715, 1.7273,  0.2070]])
Minjie Wang's avatar
Minjie Wang committed
51
```
Gan Quan's avatar
Gan Quan committed
52

Minjie Wang's avatar
Minjie Wang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
**Further reading**: DGL is released as a managed service on AWS SageMaker, see the medium posts for an easy trip to DGL on SageMaker([part1](https://medium.com/@julsimon/a-primer-on-graph-neural-networks-with-amazon-neptune-and-the-deep-graph-library-5ce64984a276) and [part2](https://medium.com/@julsimon/deep-graph-library-part-2-training-on-amazon-sagemaker-54d318dfc814)).

**Researchers** can start from the growing list of [models implemented in DGL](https://github.com/dmlc/dgl/tree/master/examples). Developing new models does not mean that you have to start from scratch. Instead, you can reuse many [pre-built modules](https://docs.dgl.ai/api/python/nn.html). Here is how to get a standard two-layer graph convolutional model with a pre-built GraphConv module:
```python
from dgl.nn.pytorch import GraphConv
import torch.nn.functional as F

# build a two-layer GCN with ReLU as the activation in between
class GCN(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(GCN, self).__init__()
        self.gcn_layer1 = GraphConv(in_feats, h_feats)
        self.gcn_layer2 = GraphConv(h_feats, num_classes)
    
    def forward(self, graph, inputs):
        h = self.gcn_layer1(graph, inputs)
        h = F.relu(h)
        h = self.gcn_layer2(graph, h)
        return h
```

Next level down, you may want to innovate your own module. DGL offers a succinct message-passing interface (see tutorial [here](https://docs.dgl.ai/tutorials/basics/3_pagerank.html)). Here is how Graph Attention Network (GAT) is implemented ([complete codes](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv)). Of course, you can also find GAT as a module [GATConv](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv):
```python
import torch.nn as nn
import torch.nn.functional as F

# Define a GAT layer
class GATLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GATLayer, self).__init__()
        self.linear_func = nn.Linear(in_feats, out_feats, bias=False)
        self.attention_func = nn.Linear(2 * out_feats, 1, bias=False)
        
    def edge_attention(self, edges):
        concat_z = torch.cat([edges.src['z'], edges.dst['z']], dim=1)
        src_e = self.attention_func(concat_z)
        src_e = F.leaky_relu(src_e)
        return {'e': src_e}
    
    def message_func(self, edges):
        return {'z': edges.src['z'], 'e':edges.data['e']}
        
    def reduce_func(self, nodes):
        a = F.softmax(nodes.mailbox['e'], dim=1)
        h = torch.sum(a * nodes.mailbox['z'], dim=1)
        return {'h': h}
                               
    def forward(self, graph, h):
        z = self.linear_func(h)
        graph.ndata['z'] = z
        graph.apply_edges(self.edge_attention)
        graph.update_all(self.message_func, self.reduce_func)
        return graph.ndata.pop('h')
```
## Performance and Scalability

Minjie Wang's avatar
Minjie Wang committed
109
**Microbenchmark on speed and memory usage**: While leaving tensor and autograd functions to backend frameworks (e.g. PyTorch, MXNet, and TensorFlow), DGL aggressively optimizes storage and computation with its own kernels. Here's a comparison to another popular package -- PyTorch Geometric (PyG). The short story is that raw speed is similar, but DGL has much better memory management.
Minjie Wang's avatar
Minjie Wang committed
110
111
112
113
114
115
116
117
118
119
120
121


| Dataset  |    Model     |                   Accuracy                   |                    Time <br> PyG &emsp;&emsp; DGL                    |           Memory <br> PyG &emsp;&emsp; DGL            |
| -------- |:------------:|:--------------------------------------------:|:--------------------------------------------------------------------:|:-----------------------------------------------------:|
| Cora     | GCN <br> GAT | 81.31 &plusmn; 0.88 <br> 83.98 &plusmn; 0.52 | <b>0.478</b> &emsp;&emsp; 0.666 <br> 1.608 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.2 &emsp;&emsp; <b>1.1</b> |
| CiteSeer | GCN <br> GAT | 70.98 &plusmn; 0.68 <br> 69.96 &plusmn; 0.53 | <b>0.490</b> &emsp;&emsp; 0.674 <br> 1.606 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.3 &emsp;&emsp; <b>1.1</b> |
| PubMed   | GCN <br> GAT | 79.00 &plusmn; 0.41 <br> 77.65 &plusmn; 0.32 | <b>0.491</b> &emsp;&emsp; 0.690 <br> 1.946 &emsp;&emsp; <b>1.393</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.6 &emsp;&emsp; <b>1.1</b> |
| Reddit   |     GCN      |             93.46 &plusmn; 0.06              |                    *OOM*&emsp;&emsp; <b>28.6</b>                     |            *OOM* &emsp;&emsp; <b>11.7</b>             |
| Reddit-S |     GCN      |                     N/A                      |                    29.12 &emsp;&emsp; <b>9.44</b>                    |             15.7 &emsp;&emsp; <b>3.6</b>              |

Table: Training time(in seconds) for 200 epochs and memory consumption(GB)

122
123
124
125
126
127
128
129
130
131
132
Here is another comparison of DGL on TensorFlow backend with other TF-based GNN tools (training time in seconds for one epoch):

| Dateset | Model | DGL | GraphNet | tf_geometric |
| ------- | ----- | --- | -------- | ------------ |
| Core | GCN | 0.0148 | 0.0152 | 0.0192 |
| Reddit | GCN | 0.1095 | OOM | OOM |
| PubMed | GCN | 0.0156 | 0.0553 | 0.0185 |
| PPI | GCN | 0.09 | 0.16 | 0.21 |
| Cora | GAT | 0.0442 | n/a | 0.058 |
| PPI | GAT | 0.398 | n/a | 0.752 |

Minjie Wang's avatar
Minjie Wang committed
133
High memory utilization allows DGL to push the limit of single-GPU performance, as seen in below images.
zhjwy9343's avatar
zhjwy9343 committed
134
| <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time1.png" width="400"> | <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time2.png" width="400"> |
Minjie Wang's avatar
Minjie Wang committed
135
| -------- | -------- |
Gan Quan's avatar
Gan Quan committed
136

Minjie Wang's avatar
Minjie Wang committed
137
**Scalability**: DGL has fully leveraged multiple GPUs in both one machine and clusters for increasing training speed, and has better performance than alternatives, as seen in below images.
138

Minjie Wang's avatar
Minjie Wang committed
139
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
140
  <img src="http://data.dgl.ai/asset/image/one-four-GPUs.png" width="600">
Minjie Wang's avatar
Minjie Wang committed
141
</p>
Minjie Wang's avatar
Minjie Wang committed
142

zhjwy9343's avatar
zhjwy9343 committed
143
| <img src="http://data.dgl.ai/asset/image/one-four-GPUs-DGLvsGraphVite.png"> |  <img src="http://data.dgl.ai/asset/image/one-fourMachines.png"> | 
Minjie Wang's avatar
Minjie Wang committed
144
| :---------------------------------------: | -- |
145

Minjie Wang's avatar
Minjie Wang committed
146
147
148
149
150
151
152
153
154
155
156
157

**Further reading**: Detailed comparison of DGL and other Graph alternatives can be found [here](https://arxiv.org/abs/1909.01315).

## DGL Models and Applications

### DGL for research
Overall there are 30+ models implemented by using DGL:
- [PyTorch](https://github.com/dmlc/dgl/tree/master/examples/pytorch)
- [MXNet](https://github.com/dmlc/dgl/tree/master/examples/mxnet)
- [TensorFlow](https://github.com/dmlc/dgl/tree/master/examples/tensorflow)

### DGL for domain applications
158
- [DGL-LifeSci](https://github.com/awslabs/dgl-lifesci), previously DGL-Chem
Minjie Wang's avatar
Minjie Wang committed
159
- [DGL-KE](https://github.com/awslabs/dgl-ke)
Minjie Wang's avatar
Minjie Wang committed
160
161
162
- DGL-RecSys(coming soon)

### DGL for NLP/CV problems
Minjie Wang's avatar
Minjie Wang committed
163
- [TreeLSTM](https://github.com/dmlc/dgl/tree/master/examples/pytorch/tree_lstm)
Minjie Wang's avatar
Minjie Wang committed
164
165
166
167
168
- [GraphWriter](https://github.com/dmlc/dgl/tree/master/examples/pytorch/graphwriter)
- [Capsule Network](https://github.com/dmlc/dgl/tree/master/examples/pytorch/capsule)

We are currently in Beta stage.  More features and improvements are coming.

Minjie Wang's avatar
Minjie Wang committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
## Awesome Papers Using DGL

1. [**Benchmarking Graph Neural Networks**](https://arxiv.org/pdf/2003.00982.pdf), *Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, Xavier Bresson*

1. [**Open Graph Benchmarks: Datasets for Machine Learning on Graphs**](https://arxiv.org/pdf/2005.00687.pdf), NeurIPS'20, *Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, Jure Leskovec*

1. [**DropEdge: Towards Deep Graph Convolutional Networks on Node Classification**](https://openreview.net/pdf?id=Hkx1qkrKPr), ICLR'20, *Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huan*

1. [**Discourse-Aware Neural Extractive Text Summarization**](https://www.aclweb.org/anthology/2020.acl-main.451/), ACL'20, *Jiacheng Xu, Zhe Gan, Yu Cheng, Jingjing Liu*

1. [**GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training**](https://dl.acm.org/doi/pdf/10.1145/3394486.3403168?casa_token=EClsH2Vc4DcAAAAA:LIB8cbtr6yTDbYuv4cTLwTIYeDq5Y2dhj_ktcWdKpzdPLGeiuL0o8GlcN4QIOnpsAnmGeGVZ), KDD'20, *Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang*

1. [**DGL-KE: Training Knowledge Graph Embeddings at Scale**](https://arxiv.org/pdf/2004.08532), SIGIR'20, *Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, George Karypis*

1. [**Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting**](https://arxiv.org/pdf/2006.09252.pdf), *Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, Michael M. Bronstein*

1. [**INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving**](https://arxiv.org/pdf/2007.02924.pdf), *Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, Roger Grosse*

1. [**Finding Patient Zero: Learning Contagion Source with Graph Neural Networks**](https://arxiv.org/pdf/2006.11913.pdf), *Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-László Barabási, Alessandro Vespignani, Rose Yu*

1. [**FeatGraph: A Flexible and Efficient Backend for Graph Neural Network Systems**](https://arxiv.org/pdf/2008.11359.pdf), SC'20, *Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang, Yida Wang*


<details><summary>more</summary>

11. [**BP-Transformer: Modelling Long-Range Context via Binary Partitioning.**](https://arxiv.org/pdf/1911.04070.pdf), *Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, Zheng Zhang*

12. [**OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery**](https://www.biorxiv.org/content/biorxiv/early/2020/06/16/2020.05.23.112201.full.pdf), *Jacques Boitreaud,Vincent Mallet, Carlos Oliver, Jérôme Waldispühl*

1. [**JAKET: Joint Pre-training of Knowledge Graph and Language Understanding**](https://arxiv.org/pdf/2010.00796.pdf), *Donghan Yu, Chenguang Zhu, Yiming Yang, Michael Zeng*

1. [**Architectural Implications of Graph Neural Networks**](https://arxiv.org/pdf/2009.00804.pdf), *Zhihui Zhang, Jingwen Leng, Lingxiao Ma, Youshan Miao, Chao Li, Minyi Guo*

1. [**Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization**](https://arxiv.org/pdf/2006.01610.pdf), *Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau1, Isabeau Prémont-Schwarz, and Andre Cire*

1. [**Sparse Graph Attention Networks**](https://arxiv.org/abs/1912.00552), *Yang Ye, Shihao Ji*

1. [**On Self-Distilling Graph Neural Network**](https://arxiv.org/pdf/2011.02255.pdf), *Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, Junzhou Huang*

1. [**Learning Robust Node Representations on Graphs**](https://arxiv.org/pdf/2008.11416.pdf), *Xu Chen, Ya Zhang, Ivor Tsang, and Yuangang Pan*

210
211
212
213
1. [**Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs**](https://arxiv.org/abs/1904.05530), *Woojeong Jin, Meng Qu, Xisen Jin, Xiang Ren*

1. [**Graph Neural Ordinary Differential Equations**](https://arxiv.org/abs/1911.07532), *Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, Jinkyoo Park*

Minjie Wang's avatar
Minjie Wang committed
214
215
1. [**FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks**](https://arxiv.org/pdf/2011.06391.pdf), *Md. Khaledur Rahman, Majedul Haque Sujon, , Ariful Azad*

216
217
218
219
1. [**An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph**](https://arxiv.org/pdf/2007.00216.pdf), KDD'20 *Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola*

1. [**Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network**](https://arxiv.org/pdf/2011.12683.pdf), *Jiarui Jin, Kounianhua Du, Weinan Zhang, Jiarui Qin, Yuchen Fang, Yong Yu, Zheng Zhang, Alexander J. Smola*

Mufei Li's avatar
Mufei Li committed
220
221
222
223
224
225
226
227
228
229
1. [**Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures**](https://www.biorxiv.org/content/10.1101/2020.07.15.204701v1), *Arian R. Jamasb, Pietro Lió, Tom L. Blundell*

1. [**Graph Policy Gradients for Large Scale Robot Control**](https://arxiv.org/abs/1907.03822), *Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, Vijay Kumar*

1. [**Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties**](https://arxiv.org/abs/2009.12710), *Zeren Shui, George Karypis*

1. [**Could Graph Neural Networks Learn Better Molecular Representation for Drug Discovery? A Comparison Study of Descriptor-based and Graph-based Models**](https://assets.researchsquare.com/files/rs-81439/v1_stamped.pdf), *Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen, Dongsheng Cao, Jian Wu, Tingjun Hou*

1. [**Principal Neighbourhood Aggregation for Graph Nets**](https://arxiv.org/abs/2004.05718), *Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, Petar Veličković*

230
231
1. [**Collective Multi-type Entity Alignment Between Knowledge Graphs**](https://dl.acm.org/doi/abs/10.1145/3366423.3380289), *Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han*

Mufei Li's avatar
Mufei Li committed
232
233
1. [**Graph Representation Forecasting of Patient's Medical Conditions: towards A Digital Twin**](https://arxiv.org/abs/2009.08299), *Pietro Barbiero, Ramon Viñas Torné, Pietro Lió*

234
235
236
237
238
239
240
241
1. [**Relational Graph Learning on Visual and Kinematics Embeddings for Accurate Gesture Recognition in Robotic Surgery**](https://arxiv.org/abs/2011.01619), *Yong-Hao Long, Jie-Ying Wu, Bo Lu, Yue-Ming Jin, Mathias Unberath, Yun-Hui Liu, Pheng-Ann Heng and Qi Dou*

1. [**Dark Reciprocal-Rank: Boosting Graph-Convolutional Self-Localization Network via Teacher-to-student Knowledge Transfer**](https://arxiv.org/abs/2011.00402), *Takeda Koji, Tanaka Kanji*

1. [**Graph InfoClust: Leveraging Cluster-Level Node Information For Unsupervised Graph Representation Learning**](https://arxiv.org/abs/2009.06946), *Costas Mavromatis, George Karypis*

1. [**GraphSeam: Supervised Graph Learning Framework for Semantic UV Mapping**](https://arxiv.org/abs/2011.13748), *Fatemeh Teimury, Bruno Roy, Juan Sebastian Casallas, David macdonald, Mark Coates*

Mufei Li's avatar
Mufei Li committed
242
243
244
245
1. [**Comprehensive Study on Molecular Supervised Learning with Graph Neural Networks**](https://pubs.acs.org/doi/10.1021/acs.jcim.0c00416), *Doyeong Hwang, Soojung Yang, Yongchan Kwon, Kyung Hoon Lee, Grace Lee, Hanseok Jo, Seyeol Yoon, and Seongok Ryu*

1. [**A graph auto-encoder model for miRNA-disease associations prediction**](https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbaa240/5929824?redirectedFrom=fulltext), *Zhengwei Li, Jiashu Li, Ru Nie, Zhu-Hong You, Wenzheng Bao*

Mufei Li's avatar
Mufei Li committed
246
1. [**Graph convolutional regression of cardiac depolarization from sparse endocardial maps**](https://arxiv.org/abs/2009.14068), STACOM 2020 workshop, *Felix Meister, Tiziano Passerini, Chloé Audigier, Èric Lluch, Viorel Mihalef, Hiroshi Ashikaga, Andreas Maier, Henry Halperin, Tommaso Mansi*
Mufei Li's avatar
Mufei Li committed
247

248
249
250
251
252
253
254
255
256
257
258
259
1. [**AttnIO: Knowledge Graph Exploration with In-and-Out Attention Flow for Knowledge-Grounded Dialogue**](https://www.aclweb.org/anthology/2020.emnlp-main.280/), EMNLP'20, *Jaehun Jung, Bokyung Son, Sungwon Lyu*

1. [**Learning from Non-Binary Constituency Trees via Tensor Decomposition**](https://arxiv.org/abs/2011.00860), COLING'20, *Daniele Castellana, Davide Bacciu*

1. [**Inducing Alignment Structure with Gated Graph Attention Networks for Sentence Matching**](https://arxiv.org/abs/2010.07668), *Peng Cui, Le Hu, Yuanchao Liu*

1. [**Enhancing Extractive Text Summarization with Topic-Aware Graph Neural Networks**](https://arxiv.org/abs/2010.06253), COLING'20, *Peng Cui, Le Hu, Yuanchao Liu*

1. [**Double Graph Based Reasoning for Document-level Relation Extraction**](https://arxiv.org/abs/2009.13752), EMNLP'20, *Shuang Zeng, Runxin Xu, Baobao Chang, Lei Li*

1. [**Systematic Generalization on gSCAN with Language Conditioned Embedding**](https://arxiv.org/abs/2009.05552), AACL-IJCNLP'20, *Tong Gao, Qi Huang, Raymond J. Mooney*

260
261
262
263
1. [**Automatic selection of clustering algorithms using supervised graph embedding**](https://arxiv.org/pdf/2011.08225.pdf), *Noy Cohen-Shapira, Lior Rokach*

1. [**Improving Learning to Branch via Reinforcement Learning**](https://openreview.net/forum?id=z4D7-PTxTb), *Haoran Sun, Wenbo Chen, Hui Li, Le Song*

Minjie Wang's avatar
Minjie Wang committed
264
1. [**A Practical Guide to Graph Neural Networks**](https://arxiv.org/pdf/2010.05234.pdf), *Isaac Ronald Ward, Jack Joyner, Casey Lickfold, Stash Rowe, Yulan Guo, Mohammed Bennamoun*, [code](https://github.com/isolabs/gnn-tutorial)
265
266
267
268
269
270
271

1. [**APAN: Asynchronous Propagation Attention Network for Real-time Temporal Graph Embedding**](https://arxiv.org/pdf/2011.11545.pdf), SIGMOD'21, *Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, Zhenyu Guo, Junkui Li*

1. [**Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks**](https://arxiv.org/pdf/2009.14455.pdf), *Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, Andreas Spanias*

1. [**Computing Graph Neural Networks: A Survey from Algorithms to Accelerators**](https://arxiv.org/pdf/2010.00130.pdf), *Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, Eduard Alarcón*

272
273
274
275
276
277
1. [**NHK_STRL at WNUT-2020 Task 2: GATs with Syntactic Dependencies as Edges and CTC-based Loss for Text Classification**](https://www.aclweb.org/anthology/2020.wnut-1.43.pdf), *Yuki Yasuda, Taichi Ishiwatari, Taro Miyazaki, Jun Goto*

1. [**Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations**](https://www.aclweb.org/anthology/2020.emnlp-main.597.pdf), *Taichi Ishiwatari, Yuki Yasuda, Taro Miyazaki, Jun Goto*

1. [**PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks**](https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf), *Minh N. Vu, My T. Thai*

Tong He's avatar
Tong He committed
278
279
1. [**A Generalization of Transformer Networks to Graphs**](https://arxiv.org/pdf/2012.09699.pdf), *Vijay Prakash Dwivedi, Xavier Bresson* 

280
281
282
1. [**Discourse-Aware Neural Extractive Text Summarization**](https://www.aclweb.org/anthology/2020.acl-main.451.pdf), ACL'20, *Jiacheng Xu, Zhe Gan, Yu Cheng, Jingjing Liu*

1. [**Learning Robust Node Representations on Graphs**](https://arxiv.org/abs/2008.11416), *Xu Chen, Ya Zhang, Ivor Tsang, Yuangang Pan*
283

284
285
286
287
288
289
1. [**Adaptive Graph Diffusion Networks with Hop-wise Attention**](https://arxiv.org/abs/2012.15024), *Chuxiong Sun, Guoshi Wu*

1. [**The Photoswitch Dataset: A Molecular Machine Learning Benchmark for the Advancement of Synthetic Chemistry**](https://arxiv.org/abs/2008.03226), *Aditya R. Thawani, Ryan-Rhys Griffiths, Arian Jamasb, Anthony Bourached, Penelope Jones, William McCorkindale, Alexander A. Aldrick, Alpha A. Lee*

1. [**A community-powered search of machine learning strategy space to find NMR property prediction models**](https://arxiv.org/abs/2008.05994), *Lars A. Bratholm, Will Gerrard, Brandon Anderson, Shaojie Bai, Sunghwan Choi, Lam Dang, Pavel Hanchar, Addison Howard, Guillaume Huard, Sanghoon Kim, Zico Kolter, Risi Kondor, Mordechai Kornbluth, Youhan Lee, Youngsoo Lee, Jonathan P. Mailoa, Thanh Tu Nguyen, Milos Popovic, Goran Rakocevic, Walter Reade, Wonho Song, Luka Stojanovic, Erik H. Thiede, Nebojsa Tijanic, Andres Torrubia, Devin Willmott, Craig P. Butts, David R. Glowacki, Kaggle participants*

Minjie Wang's avatar
Minjie Wang committed
290
</details>
Minjie Wang's avatar
Minjie Wang committed
291
292

## Installation
Gan Quan's avatar
Gan Quan committed
293
294
295
296
297

DGL should work on

* all Linux distributions no earlier than Ubuntu 16.04
* macOS X
298
* Windows 10
Gan Quan's avatar
Gan Quan committed
299

Mufei Li's avatar
Mufei Li committed
300
DGL requires Python 3.6 or later.
Gan Quan's avatar
Gan Quan committed
301

Mufei Li's avatar
Mufei Li committed
302
Right now, DGL works on [PyTorch](https://pytorch.org) 1.5.0+, [MXNet](https://mxnet.apache.org) 1.6+, and [TensorFlow](https://tensorflow.org) 2.3+.
Gan Quan's avatar
Gan Quan committed
303
304
305
306
307


### Using anaconda

```
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
308
309
conda install -c dglteam dgl           # cpu version
conda install -c dglteam dgl-cuda9.2   # CUDA 9.2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
310
conda install -c dglteam dgl-cuda10.1  # CUDA 10.1
311
conda install -c dglteam dgl-cuda10.2  # CUDA 10.2
Zihao Ye's avatar
Zihao Ye committed
312
conda install -c dglteam dgl-cuda11.0  # CUDA 11.0
Gan Quan's avatar
Gan Quan committed
313
314
315
316
```

### Using pip

317
318
319
320
321
322

|           | Latest Nightly Build Version  | Stable Version          |
|-----------|-------------------------------|-------------------------|
| CPU       | `pip install --pre dgl`       | `pip install dgl`       |
| CUDA 9.2  | `pip install --pre dgl-cu92`  | `pip install dgl-cu92`  |
| CUDA 10.1 | `pip install --pre dgl-cu101` | `pip install dgl-cu101` |
323
| CUDA 10.2 | `pip install --pre dgl-cu102` | `pip install dgl-cu102` |
Zihao Ye's avatar
Zihao Ye committed
324
| CUDA 11.0 | `pip install --pre dgl-cu110` | `pip install dgl-cu110` |
Gan Quan's avatar
Gan Quan committed
325

Minjie Wang's avatar
Minjie Wang committed
326
### Built from source code
Gan Quan's avatar
Gan Quan committed
327
328
329
330

Refer to the guide [here](https://docs.dgl.ai/install/index.html#install-from-source).


Minjie Wang's avatar
Minjie Wang committed
331
## DGL Major Releases
Gan Quan's avatar
Gan Quan committed
332

Minjie Wang's avatar
Minjie Wang committed
333
334
| Releases  | Date   | Features |
|-----------|--------|-------------------------|
335
| v0.4.3    | 03/31/2020 | - TensorFlow support <br> - DGL-KE <br> - DGL-LifeSci <br> - Heterograph sampling APIs (experimental) |
Minjie Wang's avatar
Minjie Wang committed
336
337
338
339
| v0.4.2      | 01/24/2020 |  - Heterograph support <br> - TensorFlow support (experimental) <br> - MXNet GNN modules <br> | 
| v0.3.1 | 08/23/2019 | - APIs for GNN modules <br> - Model zoo (DGL-Chem) <br> - New installation |
| v0.2 | 03/09/2019 | - Graph sampling APIs <br> - Speed improvement |
| v0.1 | 12/07/2018 | - Basic DGL APIs <br> - PyTorch and MXNet support <br> - GNN model examples and tutorials |
Gan Quan's avatar
Gan Quan committed
340

Minjie Wang's avatar
Minjie Wang committed
341
## New to Deep Learning and Graph Deep Learning?
Gan Quan's avatar
Gan Quan committed
342

Anirudh's avatar
Anirudh committed
343
Check out the open source book [*Dive into Deep Learning*](https://d2l.ai/).
344

António Almeida's avatar
António Almeida committed
345
For those who are new to graph neural network, please see the [basic of DGL](https://docs.dgl.ai/tutorials/basics/index.html).
346

Minjie Wang's avatar
Minjie Wang committed
347
For audience who are looking for more advanced, realistic, and end-to-end examples, please see [model tutorials](https://docs.dgl.ai/tutorials/models/index.html).
348
349


Gan Quan's avatar
Gan Quan committed
350
351
## Contributing

Lingfan Yu's avatar
Lingfan Yu committed
352
Please let us know if you encounter a bug or have any suggestions by [filing an issue](https://github.com/dmlc/dgl/issues).
Gan Quan's avatar
Gan Quan committed
353
354

We welcome all contributions from bug fixes to new features and extensions.
Minjie Wang's avatar
Minjie Wang committed
355

356
We expect all contributions discussed in the issue tracker and going through PRs.  Please refer to our [contribution guide](https://docs.dgl.ai/contribute.html).
Gan Quan's avatar
Gan Quan committed
357

358
359
360
361
362
## Cite

If you use DGL in a scientific publication, we would appreciate citations to the following paper:
```
@article{wang2019dgl,
Minjie Wang's avatar
Minjie Wang committed
363
364
365
366
    title={Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks},
    author={Minjie Wang and Da Zheng and Zihao Ye and Quan Gan and Mufei Li and Xiang Song and Jinjing Zhou and Chao Ma and Lingfan Yu and Yu Gai and Tianjun Xiao and Tong He and George Karypis and Jinyang Li and Zheng Zhang},
    year={2019},
    journal={arXiv preprint arXiv:1909.01315}
367
368
}
```
369

Gan Quan's avatar
Gan Quan committed
370
371
## The Team

VoVAllen's avatar
VoVAllen committed
372
DGL is developed and maintained by [NYU, NYU Shanghai, AWS Shanghai AI Lab, and AWS MXNet Science Team](https://www.dgl.ai/pages/about.html).
Gan Quan's avatar
Gan Quan committed
373
374
375
376

## License

DGL uses Apache License 2.0.