"src/vscode:/vscode.git/clone" did not exist on "40dc888fcad946b45780b122dcdb83f212027ecf"
README.md 24.1 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
<p align="center">
  <img src="http://data.dgl.ai/asset/logo.jpg" height="200">
</p>
Minjie Wang's avatar
Minjie Wang committed
4

Minjie Wang's avatar
Minjie Wang committed
5
6
[![PyPi Latest Release](https://img.shields.io/pypi/v/dgl.svg)](https://pypi.org/project/dgl/)
[![Conda Latest Release](https://anaconda.org/dglteam/dgl/badges/version.svg)](https://anaconda.org/dglteam/dgl)
Minjie Wang's avatar
Minjie Wang committed
7
[![Build Status](http://ci.dgl.ai:80/buildStatus/icon?job=DGL/master)](http://ci.dgl.ai:80/job/DGL/job/master/)
Minjie Wang's avatar
Minjie Wang committed
8
[![Benchmark by ASV](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://asv.dgl.ai/)
VoVAllen's avatar
VoVAllen committed
9
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](./LICENSE)
zzhang-cn's avatar
zzhang-cn committed
10

Minjie Wang's avatar
Minjie Wang committed
11
Documentation ([Latest](https://docs.dgl.ai/en/latest/) | [Stable](https://docs.dgl.ai)) | [DGL at a glance](https://docs.dgl.ai/tutorials/basics/1_first.html#sphx-glr-tutorials-basics-1-first-py) | [Model Tutorials](https://docs.dgl.ai/tutorials/models/index.html) | [Discussion Forum](https://discuss.dgl.ai) | [Slack Channel](https://join.slack.com/t/deep-graph-library/shared_invite/zt-eb4ict1g-xcg3PhZAFAB8p6dtKuP6xQ)
Minjie Wang's avatar
Minjie Wang committed
12

13

Minjie Wang's avatar
Minjie Wang committed
14
DGL is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.
Zheng Zhang's avatar
Zheng Zhang committed
15

Minjie Wang's avatar
Minjie Wang committed
16
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
17
  <img src="http://data.dgl.ai/asset/image/DGL-Arch.png" alt="DGL v0.4 architecture" width="600">
Minjie Wang's avatar
Minjie Wang committed
18
19
20
  <br>
  <b>Figure</b>: DGL Overall Architecture
</p>
21

zhjwy9343's avatar
zhjwy9343 committed
22
## <img src="http://data.dgl.ai/asset/image/new.png" width="30">DGL News
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
23
24
**09/05/2020**: We invite you to participate in the survey [here](https://forms.gle/Ej3jHCocACmb49Gp8) to make DGL better fit for your needs.  Thanks!

25
26
**08/21/2020**: The new **v0.5.0 release** includes distributed GNN training, overhauled documentation and user guide, and several more features.  We have also submitted some models to the [OGB](https://ogb.stanford.edu) leaderboard.  See our [release note](https://github.com/dmlc/dgl/releases/tag/0.5.0) for more details.

27
28
29
**06/11/2020**: Amazon Shanghai AI Lab and AWS Deep Engine Science team working along with academic collaborators from the University of Minnesota, The Ohio State University, and Hunan University have created the **[Drug Repurposing Knowledge Graph (DRKG)](https://github.com/gnn4dr/DRKG)** and a set of machine learning tools, [DGL-KE](https://github.com/awslabs/dgl-ke), that can be used to prioritize drugs for repurposing studies. 
DRKG is a comprehensive biological knowledge graph that relates human genes, compounds, biological processes, drug side effects, diseases and symptoms. DRKG includes, curates, and normalizes information from six publicly available databases and data that were collected from recent publications related to Covid-19. It has 97,238 entities belonging to 13 types of entities, and 5,874,261 triplets belonging to 107 types of relations. 
More about the dataset is in this [blogpost](https://www.dgl.ai/news/2020/06/09/covid.html).
30

Minjie Wang's avatar
Minjie Wang committed
31
## Using DGL
32

33
**A data scientist** may want to apply a pre-trained model to your data right away. For this you can use DGL's [Application packages, formally *Model Zoo*](https://github.com/dmlc/dgl/tree/master/apps). Application packages are developed for domain applications, as is the case for [DGL-LifeScience](https://github.com/awslabs/dgl-lifesci). We will soon add model zoo for knowledge graph embedding learning and recommender systems. Here's how you will use a pretrained model:
Minjie Wang's avatar
Minjie Wang committed
34
```python
35
36
37
from dgllife.data import Tox21
from dgllife.model import load_pretrained
from dgllife.utils import smiles_to_bigraph, CanonicalAtomFeaturizer
zzhang-cn's avatar
zzhang-cn committed
38

Minjie Wang's avatar
Minjie Wang committed
39
dataset = Tox21(smiles_to_bigraph, CanonicalAtomFeaturizer())
40
model = load_pretrained('GCN_Tox21') # Pretrained model loaded
Minjie Wang's avatar
Minjie Wang committed
41
model.eval()
zzhang-cn's avatar
zzhang-cn committed
42

Minjie Wang's avatar
Minjie Wang committed
43
44
45
smiles, g, label, mask = dataset[0]
feats = g.ndata.pop('h')
label_pred = model(g, feats)
46
47
48
49
print(smiles)                   # CCOc1ccc2nc(S(N)(=O)=O)sc2c1
print(label_pred[:, mask != 0]) # Mask non-existing labels
# tensor([[ 1.4190, -0.1820,  1.2974,  1.4416,  0.6914,  
# 2.0957,  0.5919,  0.7715, 1.7273,  0.2070]])
Minjie Wang's avatar
Minjie Wang committed
50
```
Gan Quan's avatar
Gan Quan committed
51

Minjie Wang's avatar
Minjie Wang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
**Further reading**: DGL is released as a managed service on AWS SageMaker, see the medium posts for an easy trip to DGL on SageMaker([part1](https://medium.com/@julsimon/a-primer-on-graph-neural-networks-with-amazon-neptune-and-the-deep-graph-library-5ce64984a276) and [part2](https://medium.com/@julsimon/deep-graph-library-part-2-training-on-amazon-sagemaker-54d318dfc814)).

**Researchers** can start from the growing list of [models implemented in DGL](https://github.com/dmlc/dgl/tree/master/examples). Developing new models does not mean that you have to start from scratch. Instead, you can reuse many [pre-built modules](https://docs.dgl.ai/api/python/nn.html). Here is how to get a standard two-layer graph convolutional model with a pre-built GraphConv module:
```python
from dgl.nn.pytorch import GraphConv
import torch.nn.functional as F

# build a two-layer GCN with ReLU as the activation in between
class GCN(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(GCN, self).__init__()
        self.gcn_layer1 = GraphConv(in_feats, h_feats)
        self.gcn_layer2 = GraphConv(h_feats, num_classes)
    
    def forward(self, graph, inputs):
        h = self.gcn_layer1(graph, inputs)
        h = F.relu(h)
        h = self.gcn_layer2(graph, h)
        return h
```

Next level down, you may want to innovate your own module. DGL offers a succinct message-passing interface (see tutorial [here](https://docs.dgl.ai/tutorials/basics/3_pagerank.html)). Here is how Graph Attention Network (GAT) is implemented ([complete codes](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv)). Of course, you can also find GAT as a module [GATConv](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv):
```python
import torch.nn as nn
import torch.nn.functional as F

# Define a GAT layer
class GATLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GATLayer, self).__init__()
        self.linear_func = nn.Linear(in_feats, out_feats, bias=False)
        self.attention_func = nn.Linear(2 * out_feats, 1, bias=False)
        
    def edge_attention(self, edges):
        concat_z = torch.cat([edges.src['z'], edges.dst['z']], dim=1)
        src_e = self.attention_func(concat_z)
        src_e = F.leaky_relu(src_e)
        return {'e': src_e}
    
    def message_func(self, edges):
        return {'z': edges.src['z'], 'e':edges.data['e']}
        
    def reduce_func(self, nodes):
        a = F.softmax(nodes.mailbox['e'], dim=1)
        h = torch.sum(a * nodes.mailbox['z'], dim=1)
        return {'h': h}
                               
    def forward(self, graph, h):
        z = self.linear_func(h)
        graph.ndata['z'] = z
        graph.apply_edges(self.edge_attention)
        graph.update_all(self.message_func, self.reduce_func)
        return graph.ndata.pop('h')
```
## Performance and Scalability

Minjie Wang's avatar
Minjie Wang committed
108
**Microbenchmark on speed and memory usage**: While leaving tensor and autograd functions to backend frameworks (e.g. PyTorch, MXNet, and TensorFlow), DGL aggressively optimizes storage and computation with its own kernels. Here's a comparison to another popular package -- PyTorch Geometric (PyG). The short story is that raw speed is similar, but DGL has much better memory management.
Minjie Wang's avatar
Minjie Wang committed
109
110
111
112
113
114
115
116
117
118
119
120


| Dataset  |    Model     |                   Accuracy                   |                    Time <br> PyG &emsp;&emsp; DGL                    |           Memory <br> PyG &emsp;&emsp; DGL            |
| -------- |:------------:|:--------------------------------------------:|:--------------------------------------------------------------------:|:-----------------------------------------------------:|
| Cora     | GCN <br> GAT | 81.31 &plusmn; 0.88 <br> 83.98 &plusmn; 0.52 | <b>0.478</b> &emsp;&emsp; 0.666 <br> 1.608 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.2 &emsp;&emsp; <b>1.1</b> |
| CiteSeer | GCN <br> GAT | 70.98 &plusmn; 0.68 <br> 69.96 &plusmn; 0.53 | <b>0.490</b> &emsp;&emsp; 0.674 <br> 1.606 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.3 &emsp;&emsp; <b>1.1</b> |
| PubMed   | GCN <br> GAT | 79.00 &plusmn; 0.41 <br> 77.65 &plusmn; 0.32 | <b>0.491</b> &emsp;&emsp; 0.690 <br> 1.946 &emsp;&emsp; <b>1.393</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.6 &emsp;&emsp; <b>1.1</b> |
| Reddit   |     GCN      |             93.46 &plusmn; 0.06              |                    *OOM*&emsp;&emsp; <b>28.6</b>                     |            *OOM* &emsp;&emsp; <b>11.7</b>             |
| Reddit-S |     GCN      |                     N/A                      |                    29.12 &emsp;&emsp; <b>9.44</b>                    |             15.7 &emsp;&emsp; <b>3.6</b>              |

Table: Training time(in seconds) for 200 epochs and memory consumption(GB)

121
122
123
124
125
126
127
128
129
130
131
Here is another comparison of DGL on TensorFlow backend with other TF-based GNN tools (training time in seconds for one epoch):

| Dateset | Model | DGL | GraphNet | tf_geometric |
| ------- | ----- | --- | -------- | ------------ |
| Core | GCN | 0.0148 | 0.0152 | 0.0192 |
| Reddit | GCN | 0.1095 | OOM | OOM |
| PubMed | GCN | 0.0156 | 0.0553 | 0.0185 |
| PPI | GCN | 0.09 | 0.16 | 0.21 |
| Cora | GAT | 0.0442 | n/a | 0.058 |
| PPI | GAT | 0.398 | n/a | 0.752 |

Minjie Wang's avatar
Minjie Wang committed
132
High memory utilization allows DGL to push the limit of single-GPU performance, as seen in below images.
zhjwy9343's avatar
zhjwy9343 committed
133
| <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time1.png" width="400"> | <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time2.png" width="400"> |
Minjie Wang's avatar
Minjie Wang committed
134
| -------- | -------- |
Gan Quan's avatar
Gan Quan committed
135

Minjie Wang's avatar
Minjie Wang committed
136
**Scalability**: DGL has fully leveraged multiple GPUs in both one machine and clusters for increasing training speed, and has better performance than alternatives, as seen in below images.
137

Minjie Wang's avatar
Minjie Wang committed
138
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
139
  <img src="http://data.dgl.ai/asset/image/one-four-GPUs.png" width="600">
Minjie Wang's avatar
Minjie Wang committed
140
</p>
Minjie Wang's avatar
Minjie Wang committed
141

zhjwy9343's avatar
zhjwy9343 committed
142
| <img src="http://data.dgl.ai/asset/image/one-four-GPUs-DGLvsGraphVite.png"> |  <img src="http://data.dgl.ai/asset/image/one-fourMachines.png"> | 
Minjie Wang's avatar
Minjie Wang committed
143
| :---------------------------------------: | -- |
144

Minjie Wang's avatar
Minjie Wang committed
145
146
147
148
149
150
151
152
153
154
155
156

**Further reading**: Detailed comparison of DGL and other Graph alternatives can be found [here](https://arxiv.org/abs/1909.01315).

## DGL Models and Applications

### DGL for research
Overall there are 30+ models implemented by using DGL:
- [PyTorch](https://github.com/dmlc/dgl/tree/master/examples/pytorch)
- [MXNet](https://github.com/dmlc/dgl/tree/master/examples/mxnet)
- [TensorFlow](https://github.com/dmlc/dgl/tree/master/examples/tensorflow)

### DGL for domain applications
157
- [DGL-LifeSci](https://github.com/awslabs/dgl-lifesci), previously DGL-Chem
Minjie Wang's avatar
Minjie Wang committed
158
- [DGL-KE](https://github.com/awslabs/dgl-ke)
Minjie Wang's avatar
Minjie Wang committed
159
160
161
- DGL-RecSys(coming soon)

### DGL for NLP/CV problems
Minjie Wang's avatar
Minjie Wang committed
162
- [TreeLSTM](https://github.com/dmlc/dgl/tree/master/examples/pytorch/tree_lstm)
Minjie Wang's avatar
Minjie Wang committed
163
164
165
166
167
- [GraphWriter](https://github.com/dmlc/dgl/tree/master/examples/pytorch/graphwriter)
- [Capsule Network](https://github.com/dmlc/dgl/tree/master/examples/pytorch/capsule)

We are currently in Beta stage.  More features and improvements are coming.

Minjie Wang's avatar
Minjie Wang committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
## Awesome Papers Using DGL

1. [**Benchmarking Graph Neural Networks**](https://arxiv.org/pdf/2003.00982.pdf), *Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, Xavier Bresson*

1. [**Open Graph Benchmarks: Datasets for Machine Learning on Graphs**](https://arxiv.org/pdf/2005.00687.pdf), NeurIPS'20, *Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, Jure Leskovec*

1. [**DropEdge: Towards Deep Graph Convolutional Networks on Node Classification**](https://openreview.net/pdf?id=Hkx1qkrKPr), ICLR'20, *Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huan*

1. [**Discourse-Aware Neural Extractive Text Summarization**](https://www.aclweb.org/anthology/2020.acl-main.451/), ACL'20, *Jiacheng Xu, Zhe Gan, Yu Cheng, Jingjing Liu*

1. [**GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training**](https://dl.acm.org/doi/pdf/10.1145/3394486.3403168?casa_token=EClsH2Vc4DcAAAAA:LIB8cbtr6yTDbYuv4cTLwTIYeDq5Y2dhj_ktcWdKpzdPLGeiuL0o8GlcN4QIOnpsAnmGeGVZ), KDD'20, *Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang*

1. [**DGL-KE: Training Knowledge Graph Embeddings at Scale**](https://arxiv.org/pdf/2004.08532), SIGIR'20, *Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, George Karypis*

1. [**Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting**](https://arxiv.org/pdf/2006.09252.pdf), *Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, Michael M. Bronstein*

1. [**INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving**](https://arxiv.org/pdf/2007.02924.pdf), *Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, Roger Grosse*

1. [**Finding Patient Zero: Learning Contagion Source with Graph Neural Networks**](https://arxiv.org/pdf/2006.11913.pdf), *Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-László Barabási, Alessandro Vespignani, Rose Yu*

1. [**FeatGraph: A Flexible and Efficient Backend for Graph Neural Network Systems**](https://arxiv.org/pdf/2008.11359.pdf), SC'20, *Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang, Yida Wang*


<details><summary>more</summary>

11. [**BP-Transformer: Modelling Long-Range Context via Binary Partitioning.**](https://arxiv.org/pdf/1911.04070.pdf), *Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, Zheng Zhang*

12. [**OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery**](https://www.biorxiv.org/content/biorxiv/early/2020/06/16/2020.05.23.112201.full.pdf), *Jacques Boitreaud,Vincent Mallet, Carlos Oliver, Jérôme Waldispühl*

1. [**JAKET: Joint Pre-training of Knowledge Graph and Language Understanding**](https://arxiv.org/pdf/2010.00796.pdf), *Donghan Yu, Chenguang Zhu, Yiming Yang, Michael Zeng*

1. [**Architectural Implications of Graph Neural Networks**](https://arxiv.org/pdf/2009.00804.pdf), *Zhihui Zhang, Jingwen Leng, Lingxiao Ma, Youshan Miao, Chao Li, Minyi Guo*

1. [**Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization**](https://arxiv.org/pdf/2006.01610.pdf), *Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau1, Isabeau Prémont-Schwarz, and Andre Cire*

1. [**Sparse Graph Attention Networks**](https://arxiv.org/abs/1912.00552), *Yang Ye, Shihao Ji*

1. [**On Self-Distilling Graph Neural Network**](https://arxiv.org/pdf/2011.02255.pdf), *Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, Junzhou Huang*

1. [**Learning Robust Node Representations on Graphs**](https://arxiv.org/pdf/2008.11416.pdf), *Xu Chen, Ya Zhang, Ivor Tsang, and Yuangang Pan*

209
210
211
212
1. [**Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs**](https://arxiv.org/abs/1904.05530), *Woojeong Jin, Meng Qu, Xisen Jin, Xiang Ren*

1. [**Graph Neural Ordinary Differential Equations**](https://arxiv.org/abs/1911.07532), *Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, Jinkyoo Park*

Minjie Wang's avatar
Minjie Wang committed
213
214
1. [**FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks**](https://arxiv.org/pdf/2011.06391.pdf), *Md. Khaledur Rahman, Majedul Haque Sujon, , Ariful Azad*

215
216
217
218
1. [**An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph**](https://arxiv.org/pdf/2007.00216.pdf), KDD'20 *Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola*

1. [**Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network**](https://arxiv.org/pdf/2011.12683.pdf), *Jiarui Jin, Kounianhua Du, Weinan Zhang, Jiarui Qin, Yuchen Fang, Yong Yu, Zheng Zhang, Alexander J. Smola*

Mufei Li's avatar
Mufei Li committed
219
220
221
222
223
224
225
226
227
228
1. [**Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures**](https://www.biorxiv.org/content/10.1101/2020.07.15.204701v1), *Arian R. Jamasb, Pietro Lió, Tom L. Blundell*

1. [**Graph Policy Gradients for Large Scale Robot Control**](https://arxiv.org/abs/1907.03822), *Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, Vijay Kumar*

1. [**Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties**](https://arxiv.org/abs/2009.12710), *Zeren Shui, George Karypis*

1. [**Could Graph Neural Networks Learn Better Molecular Representation for Drug Discovery? A Comparison Study of Descriptor-based and Graph-based Models**](https://assets.researchsquare.com/files/rs-81439/v1_stamped.pdf), *Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen, Dongsheng Cao, Jian Wu, Tingjun Hou*

1. [**Principal Neighbourhood Aggregation for Graph Nets**](https://arxiv.org/abs/2004.05718), *Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, Petar Veličković*

229
230
1. [**Collective Multi-type Entity Alignment Between Knowledge Graphs**](https://dl.acm.org/doi/abs/10.1145/3366423.3380289), *Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han*

Mufei Li's avatar
Mufei Li committed
231
232
1. [**Graph Representation Forecasting of Patient's Medical Conditions: towards A Digital Twin**](https://arxiv.org/abs/2009.08299), *Pietro Barbiero, Ramon Viñas Torné, Pietro Lió*

233
234
235
236
237
238
239
240
1. [**Relational Graph Learning on Visual and Kinematics Embeddings for Accurate Gesture Recognition in Robotic Surgery**](https://arxiv.org/abs/2011.01619), *Yong-Hao Long, Jie-Ying Wu, Bo Lu, Yue-Ming Jin, Mathias Unberath, Yun-Hui Liu, Pheng-Ann Heng and Qi Dou*

1. [**Dark Reciprocal-Rank: Boosting Graph-Convolutional Self-Localization Network via Teacher-to-student Knowledge Transfer**](https://arxiv.org/abs/2011.00402), *Takeda Koji, Tanaka Kanji*

1. [**Graph InfoClust: Leveraging Cluster-Level Node Information For Unsupervised Graph Representation Learning**](https://arxiv.org/abs/2009.06946), *Costas Mavromatis, George Karypis*

1. [**GraphSeam: Supervised Graph Learning Framework for Semantic UV Mapping**](https://arxiv.org/abs/2011.13748), *Fatemeh Teimury, Bruno Roy, Juan Sebastian Casallas, David macdonald, Mark Coates*

Mufei Li's avatar
Mufei Li committed
241
242
243
244
1. [**Comprehensive Study on Molecular Supervised Learning with Graph Neural Networks**](https://pubs.acs.org/doi/10.1021/acs.jcim.0c00416), *Doyeong Hwang, Soojung Yang, Yongchan Kwon, Kyung Hoon Lee, Grace Lee, Hanseok Jo, Seyeol Yoon, and Seongok Ryu*

1. [**A graph auto-encoder model for miRNA-disease associations prediction**](https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbaa240/5929824?redirectedFrom=fulltext), *Zhengwei Li, Jiashu Li, Ru Nie, Zhu-Hong You, Wenzheng Bao*

Mufei Li's avatar
Mufei Li committed
245
1. [**Graph convolutional regression of cardiac depolarization from sparse endocardial maps**](https://arxiv.org/abs/2009.14068), STACOM 2020 workshop, *Felix Meister, Tiziano Passerini, Chloé Audigier, Èric Lluch, Viorel Mihalef, Hiroshi Ashikaga, Andreas Maier, Henry Halperin, Tommaso Mansi*
Mufei Li's avatar
Mufei Li committed
246

247
248
249
250
251
252
253
254
255
256
257
258
1. [**AttnIO: Knowledge Graph Exploration with In-and-Out Attention Flow for Knowledge-Grounded Dialogue**](https://www.aclweb.org/anthology/2020.emnlp-main.280/), EMNLP'20, *Jaehun Jung, Bokyung Son, Sungwon Lyu*

1. [**Learning from Non-Binary Constituency Trees via Tensor Decomposition**](https://arxiv.org/abs/2011.00860), COLING'20, *Daniele Castellana, Davide Bacciu*

1. [**Inducing Alignment Structure with Gated Graph Attention Networks for Sentence Matching**](https://arxiv.org/abs/2010.07668), *Peng Cui, Le Hu, Yuanchao Liu*

1. [**Enhancing Extractive Text Summarization with Topic-Aware Graph Neural Networks**](https://arxiv.org/abs/2010.06253), COLING'20, *Peng Cui, Le Hu, Yuanchao Liu*

1. [**Double Graph Based Reasoning for Document-level Relation Extraction**](https://arxiv.org/abs/2009.13752), EMNLP'20, *Shuang Zeng, Runxin Xu, Baobao Chang, Lei Li*

1. [**Systematic Generalization on gSCAN with Language Conditioned Embedding**](https://arxiv.org/abs/2009.05552), AACL-IJCNLP'20, *Tong Gao, Qi Huang, Raymond J. Mooney*

259
260
261
262
263
264
265
266
267
268
269
270
271
1. [**Automatic selection of clustering algorithms using supervised graph embedding**](https://arxiv.org/pdf/2011.08225.pdf), *Noy Cohen-Shapira, Lior Rokach*

1. [**Improving Learning to Branch via Reinforcement Learning**](https://openreview.net/forum?id=z4D7-PTxTb), *Haoran Sun, Wenbo Chen, Hui Li, Le Song*

1. [**A Practical Guide to Graph Neural Networks**](https://arxiv.org/pdf/2010.05234.pdf), *Issac Ronald Ward, Jack Joyner, Casey Lickfold, Stash Rowe, Yulan Guo, Mohammed Bennamoun*, [code](https://github.com/isolabs/gnn-tutorial)

1. [**APAN: Asynchronous Propagation Attention Network for Real-time Temporal Graph Embedding**](https://arxiv.org/pdf/2011.11545.pdf), SIGMOD'21, *Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, Zhenyu Guo, Junkui Li*

1. [**Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks**](https://arxiv.org/pdf/2009.14455.pdf), *Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, Andreas Spanias*

1. [**Computing Graph Neural Networks: A Survey from Algorithms to Accelerators**](https://arxiv.org/pdf/2010.00130.pdf), *Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, Eduard Alarcón*


Minjie Wang's avatar
Minjie Wang committed
272
</details>
Minjie Wang's avatar
Minjie Wang committed
273
274

## Installation
Gan Quan's avatar
Gan Quan committed
275
276
277
278
279

DGL should work on

* all Linux distributions no earlier than Ubuntu 16.04
* macOS X
280
* Windows 10
Gan Quan's avatar
Gan Quan committed
281

Mufei Li's avatar
Mufei Li committed
282
DGL requires Python 3.6 or later.
Gan Quan's avatar
Gan Quan committed
283

Mufei Li's avatar
Mufei Li committed
284
Right now, DGL works on [PyTorch](https://pytorch.org) 1.5.0+, [MXNet](https://mxnet.apache.org) 1.6+, and [TensorFlow](https://tensorflow.org) 2.3+.
Gan Quan's avatar
Gan Quan committed
285
286
287
288
289


### Using anaconda

```
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
290
291
conda install -c dglteam dgl           # cpu version
conda install -c dglteam dgl-cuda9.2   # CUDA 9.2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
292
conda install -c dglteam dgl-cuda10.1  # CUDA 10.1
293
conda install -c dglteam dgl-cuda10.2  # CUDA 10.2
Zihao Ye's avatar
Zihao Ye committed
294
conda install -c dglteam dgl-cuda11.0  # CUDA 11.0
Gan Quan's avatar
Gan Quan committed
295
296
297
298
```

### Using pip

299
300
301
302
303
304

|           | Latest Nightly Build Version  | Stable Version          |
|-----------|-------------------------------|-------------------------|
| CPU       | `pip install --pre dgl`       | `pip install dgl`       |
| CUDA 9.2  | `pip install --pre dgl-cu92`  | `pip install dgl-cu92`  |
| CUDA 10.1 | `pip install --pre dgl-cu101` | `pip install dgl-cu101` |
305
| CUDA 10.2 | `pip install --pre dgl-cu102` | `pip install dgl-cu102` |
Zihao Ye's avatar
Zihao Ye committed
306
| CUDA 11.0 | `pip install --pre dgl-cu110` | `pip install dgl-cu110` |
Gan Quan's avatar
Gan Quan committed
307

Minjie Wang's avatar
Minjie Wang committed
308
### Built from source code
Gan Quan's avatar
Gan Quan committed
309
310
311
312

Refer to the guide [here](https://docs.dgl.ai/install/index.html#install-from-source).


Minjie Wang's avatar
Minjie Wang committed
313
## DGL Major Releases
Gan Quan's avatar
Gan Quan committed
314

Minjie Wang's avatar
Minjie Wang committed
315
316
| Releases  | Date   | Features |
|-----------|--------|-------------------------|
317
| v0.4.3    | 03/31/2020 | - TensorFlow support <br> - DGL-KE <br> - DGL-LifeSci <br> - Heterograph sampling APIs (experimental) |
Minjie Wang's avatar
Minjie Wang committed
318
319
320
321
| v0.4.2      | 01/24/2020 |  - Heterograph support <br> - TensorFlow support (experimental) <br> - MXNet GNN modules <br> | 
| v0.3.1 | 08/23/2019 | - APIs for GNN modules <br> - Model zoo (DGL-Chem) <br> - New installation |
| v0.2 | 03/09/2019 | - Graph sampling APIs <br> - Speed improvement |
| v0.1 | 12/07/2018 | - Basic DGL APIs <br> - PyTorch and MXNet support <br> - GNN model examples and tutorials |
Gan Quan's avatar
Gan Quan committed
322

Minjie Wang's avatar
Minjie Wang committed
323
## New to Deep Learning and Graph Deep Learning?
Gan Quan's avatar
Gan Quan committed
324

Anirudh's avatar
Anirudh committed
325
Check out the open source book [*Dive into Deep Learning*](https://d2l.ai/).
326

António Almeida's avatar
António Almeida committed
327
For those who are new to graph neural network, please see the [basic of DGL](https://docs.dgl.ai/tutorials/basics/index.html).
328

Minjie Wang's avatar
Minjie Wang committed
329
For audience who are looking for more advanced, realistic, and end-to-end examples, please see [model tutorials](https://docs.dgl.ai/tutorials/models/index.html).
330
331


Gan Quan's avatar
Gan Quan committed
332
333
## Contributing

Lingfan Yu's avatar
Lingfan Yu committed
334
Please let us know if you encounter a bug or have any suggestions by [filing an issue](https://github.com/dmlc/dgl/issues).
Gan Quan's avatar
Gan Quan committed
335
336

We welcome all contributions from bug fixes to new features and extensions.
Minjie Wang's avatar
Minjie Wang committed
337

338
We expect all contributions discussed in the issue tracker and going through PRs.  Please refer to our [contribution guide](https://docs.dgl.ai/contribute.html).
Gan Quan's avatar
Gan Quan committed
339

340
341
342
343
344
## Cite

If you use DGL in a scientific publication, we would appreciate citations to the following paper:
```
@article{wang2019dgl,
Minjie Wang's avatar
Minjie Wang committed
345
346
347
348
    title={Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks},
    author={Minjie Wang and Da Zheng and Zihao Ye and Quan Gan and Mufei Li and Xiang Song and Jinjing Zhou and Chao Ma and Lingfan Yu and Yu Gai and Tianjun Xiao and Tong He and George Karypis and Jinyang Li and Zheng Zhang},
    year={2019},
    journal={arXiv preprint arXiv:1909.01315}
349
350
}
```
351

Gan Quan's avatar
Gan Quan committed
352
353
## The Team

VoVAllen's avatar
VoVAllen committed
354
DGL is developed and maintained by [NYU, NYU Shanghai, AWS Shanghai AI Lab, and AWS MXNet Science Team](https://www.dgl.ai/pages/about.html).
Gan Quan's avatar
Gan Quan committed
355
356
357
358

## License

DGL uses Apache License 2.0.