README.md 12.6 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
# Deep Graph Library (DGL)
Minjie Wang's avatar
Minjie Wang committed
2

Minjie Wang's avatar
Minjie Wang committed
3
4
[![PyPi Latest Release](https://img.shields.io/pypi/v/dgl.svg)](https://pypi.org/project/dgl/)
[![Conda Latest Release](https://anaconda.org/dglteam/dgl/badges/version.svg)](https://anaconda.org/dglteam/dgl)
Minjie Wang's avatar
Minjie Wang committed
5
[![Build Status](http://ci.dgl.ai:80/buildStatus/icon?job=DGL/master)](http://ci.dgl.ai:80/job/DGL/job/master/)
Minjie Wang's avatar
Minjie Wang committed
6
[![Benchmark by ASV](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://asv.dgl.ai/)
VoVAllen's avatar
VoVAllen committed
7
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](./LICENSE)
zzhang-cn's avatar
zzhang-cn committed
8

Minjie Wang's avatar
Minjie Wang committed
9
Documentation ([Latest](https://docs.dgl.ai/en/latest/) | [Stable](https://docs.dgl.ai)) | [DGL at a glance](https://docs.dgl.ai/tutorials/basics/1_first.html#sphx-glr-tutorials-basics-1-first-py) | [Model Tutorials](https://docs.dgl.ai/tutorials/models/index.html) | [Discussion Forum](https://discuss.dgl.ai)
Minjie Wang's avatar
Minjie Wang committed
10

11

Minjie Wang's avatar
Minjie Wang committed
12
DGL is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.
Zheng Zhang's avatar
Zheng Zhang committed
13

Minjie Wang's avatar
Minjie Wang committed
14
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
15
  <img src="http://data.dgl.ai/asset/image/DGL-Arch.png" alt="DGL v0.4 architecture" width="600">
Minjie Wang's avatar
Minjie Wang committed
16
17
18
  <br>
  <b>Figure</b>: DGL Overall Architecture
</p>
19

zhjwy9343's avatar
zhjwy9343 committed
20
## <img src="http://data.dgl.ai/asset/image/new.png" width="30">DGL News
21
03/02/2020: **Check out this cool paper: [Benchmarking Graph Neural Networks](https://arxiv.org/abs/2003.00982)!**  It includes a DGL-based benchmark framework for novel medium-scale graph datasets, covering mathematical modeling, computer vision, chemistry and combinatorial problems.  See [repo here](https://github.com/graphdeeplearning/benchmarking-gnns).
22

Minjie Wang's avatar
Minjie Wang committed
23
## Using DGL
24

Minjie Wang's avatar
Minjie Wang committed
25
26
**A data scientist** may want to apply a pre-trained model to your data right away. For this you can use DGL's [Application packages, formally *Model Zoo*](https://github.com/dmlc/dgl/tree/master/apps). Application packages are developed for domain applications, as is the case for [DGL-LifeScience](https://github.com/dmlc/dgl/tree/master/apps/life_sci). We will soon add model zoo for knowledge graph embedding learning and recommender systems. Here's how you will use a pretrained model:
```python
27
28
29
from dgllife.data import Tox21
from dgllife.model import load_pretrained
from dgllife.utils import smiles_to_bigraph, CanonicalAtomFeaturizer
zzhang-cn's avatar
zzhang-cn committed
30

Minjie Wang's avatar
Minjie Wang committed
31
dataset = Tox21(smiles_to_bigraph, CanonicalAtomFeaturizer())
32
model = load_pretrained('GCN_Tox21') # Pretrained model loaded
Minjie Wang's avatar
Minjie Wang committed
33
model.eval()
zzhang-cn's avatar
zzhang-cn committed
34

Minjie Wang's avatar
Minjie Wang committed
35
36
37
smiles, g, label, mask = dataset[0]
feats = g.ndata.pop('h')
label_pred = model(g, feats)
38
39
40
41
print(smiles)                   # CCOc1ccc2nc(S(N)(=O)=O)sc2c1
print(label_pred[:, mask != 0]) # Mask non-existing labels
# tensor([[ 1.4190, -0.1820,  1.2974,  1.4416,  0.6914,  
# 2.0957,  0.5919,  0.7715, 1.7273,  0.2070]])
Minjie Wang's avatar
Minjie Wang committed
42
```
Gan Quan's avatar
Gan Quan committed
43

Minjie Wang's avatar
Minjie Wang committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
**Further reading**: DGL is released as a managed service on AWS SageMaker, see the medium posts for an easy trip to DGL on SageMaker([part1](https://medium.com/@julsimon/a-primer-on-graph-neural-networks-with-amazon-neptune-and-the-deep-graph-library-5ce64984a276) and [part2](https://medium.com/@julsimon/deep-graph-library-part-2-training-on-amazon-sagemaker-54d318dfc814)).

**Researchers** can start from the growing list of [models implemented in DGL](https://github.com/dmlc/dgl/tree/master/examples). Developing new models does not mean that you have to start from scratch. Instead, you can reuse many [pre-built modules](https://docs.dgl.ai/api/python/nn.html). Here is how to get a standard two-layer graph convolutional model with a pre-built GraphConv module:
```python
from dgl.nn.pytorch import GraphConv
import torch.nn.functional as F

# build a two-layer GCN with ReLU as the activation in between
class GCN(nn.Module):
    def __init__(self, in_feats, h_feats, num_classes):
        super(GCN, self).__init__()
        self.gcn_layer1 = GraphConv(in_feats, h_feats)
        self.gcn_layer2 = GraphConv(h_feats, num_classes)
    
    def forward(self, graph, inputs):
        h = self.gcn_layer1(graph, inputs)
        h = F.relu(h)
        h = self.gcn_layer2(graph, h)
        return h
```

Next level down, you may want to innovate your own module. DGL offers a succinct message-passing interface (see tutorial [here](https://docs.dgl.ai/tutorials/basics/3_pagerank.html)). Here is how Graph Attention Network (GAT) is implemented ([complete codes](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv)). Of course, you can also find GAT as a module [GATConv](https://docs.dgl.ai/api/python/nn.pytorch.html#gatconv):
```python
import torch.nn as nn
import torch.nn.functional as F

# Define a GAT layer
class GATLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GATLayer, self).__init__()
        self.linear_func = nn.Linear(in_feats, out_feats, bias=False)
        self.attention_func = nn.Linear(2 * out_feats, 1, bias=False)
        
    def edge_attention(self, edges):
        concat_z = torch.cat([edges.src['z'], edges.dst['z']], dim=1)
        src_e = self.attention_func(concat_z)
        src_e = F.leaky_relu(src_e)
        return {'e': src_e}
    
    def message_func(self, edges):
        return {'z': edges.src['z'], 'e':edges.data['e']}
        
    def reduce_func(self, nodes):
        a = F.softmax(nodes.mailbox['e'], dim=1)
        h = torch.sum(a * nodes.mailbox['z'], dim=1)
        return {'h': h}
                               
    def forward(self, graph, h):
        z = self.linear_func(h)
        graph.ndata['z'] = z
        graph.apply_edges(self.edge_attention)
        graph.update_all(self.message_func, self.reduce_func)
        return graph.ndata.pop('h')
```
## Performance and Scalability

Minjie Wang's avatar
Minjie Wang committed
100
**Microbenchmark on speed and memory usage**: While leaving tensor and autograd functions to backend frameworks (e.g. PyTorch, MXNet, and TensorFlow), DGL aggressively optimizes storage and computation with its own kernels. Here's a comparison to another popular package -- PyTorch Geometric (PyG). The short story is that raw speed is similar, but DGL has much better memory management.
Minjie Wang's avatar
Minjie Wang committed
101
102
103
104
105
106
107
108
109
110
111
112
113


| Dataset  |    Model     |                   Accuracy                   |                    Time <br> PyG &emsp;&emsp; DGL                    |           Memory <br> PyG &emsp;&emsp; DGL            |
| -------- |:------------:|:--------------------------------------------:|:--------------------------------------------------------------------:|:-----------------------------------------------------:|
| Cora     | GCN <br> GAT | 81.31 &plusmn; 0.88 <br> 83.98 &plusmn; 0.52 | <b>0.478</b> &emsp;&emsp; 0.666 <br> 1.608 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.2 &emsp;&emsp; <b>1.1</b> |
| CiteSeer | GCN <br> GAT | 70.98 &plusmn; 0.68 <br> 69.96 &plusmn; 0.53 | <b>0.490</b> &emsp;&emsp; 0.674 <br> 1.606 &emsp;&emsp; <b>1.399</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.3 &emsp;&emsp; <b>1.1</b> |
| PubMed   | GCN <br> GAT | 79.00 &plusmn; 0.41 <br> 77.65 &plusmn; 0.32 | <b>0.491</b> &emsp;&emsp; 0.690 <br> 1.946 &emsp;&emsp; <b>1.393</b> | 1.1 &emsp;&emsp; 1.1 <br> 1.6 &emsp;&emsp; <b>1.1</b> |
| Reddit   |     GCN      |             93.46 &plusmn; 0.06              |                    *OOM*&emsp;&emsp; <b>28.6</b>                     |            *OOM* &emsp;&emsp; <b>11.7</b>             |
| Reddit-S |     GCN      |                     N/A                      |                    29.12 &emsp;&emsp; <b>9.44</b>                    |             15.7 &emsp;&emsp; <b>3.6</b>              |

Table: Training time(in seconds) for 200 epochs and memory consumption(GB)

High memory utilization allows DGL to push the limit of single-GPU performance, as seen in below images.
zhjwy9343's avatar
zhjwy9343 committed
114
| <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time1.png" width="400"> | <img src="http://data.dgl.ai/asset/image/DGLvsPyG-time2.png" width="400"> |
Minjie Wang's avatar
Minjie Wang committed
115
| -------- | -------- |
Gan Quan's avatar
Gan Quan committed
116

Minjie Wang's avatar
Minjie Wang committed
117
**Scalability**: DGL has fully leveraged multiple GPUs in both one machine and clusters for increasing training speed, and has better performance than alternatives, as seen in below images.
118

Minjie Wang's avatar
Minjie Wang committed
119
<p align="center">
zhjwy9343's avatar
zhjwy9343 committed
120
  <img src="http://data.dgl.ai/asset/image/one-four-GPUs.png" width="600">
Minjie Wang's avatar
Minjie Wang committed
121
</p>
Minjie Wang's avatar
Minjie Wang committed
122

zhjwy9343's avatar
zhjwy9343 committed
123
| <img src="http://data.dgl.ai/asset/image/one-four-GPUs-DGLvsGraphVite.png"> |  <img src="http://data.dgl.ai/asset/image/one-fourMachines.png"> | 
Minjie Wang's avatar
Minjie Wang committed
124
| :---------------------------------------: | -- |
125

Minjie Wang's avatar
Minjie Wang committed
126
127
128
129
130
131
132
133
134
135
136
137
138

**Further reading**: Detailed comparison of DGL and other Graph alternatives can be found [here](https://arxiv.org/abs/1909.01315).

## DGL Models and Applications

### DGL for research
Overall there are 30+ models implemented by using DGL:
- [PyTorch](https://github.com/dmlc/dgl/tree/master/examples/pytorch)
- [MXNet](https://github.com/dmlc/dgl/tree/master/examples/mxnet)
- [TensorFlow](https://github.com/dmlc/dgl/tree/master/examples/tensorflow)

### DGL for domain applications
- [DGL-LifeSci](https://github.com/dmlc/dgl/tree/master/apps/life_sci), previously DGL-Chem
Minjie Wang's avatar
Minjie Wang committed
139
- [DGL-KE](https://github.com/awslabs/dgl-ke)
Minjie Wang's avatar
Minjie Wang committed
140
141
142
- DGL-RecSys(coming soon)

### DGL for NLP/CV problems
Minjie Wang's avatar
Minjie Wang committed
143
- [TreeLSTM](https://github.com/dmlc/dgl/tree/master/examples/pytorch/tree_lstm)
Minjie Wang's avatar
Minjie Wang committed
144
145
146
147
148
149
150
- [GraphWriter](https://github.com/dmlc/dgl/tree/master/examples/pytorch/graphwriter)
- [Capsule Network](https://github.com/dmlc/dgl/tree/master/examples/pytorch/capsule)

We are currently in Beta stage.  More features and improvements are coming.


## Installation
Gan Quan's avatar
Gan Quan committed
151
152
153
154
155

DGL should work on

* all Linux distributions no earlier than Ubuntu 16.04
* macOS X
156
* Windows 10
Gan Quan's avatar
Gan Quan committed
157

Minjie Wang's avatar
Minjie Wang committed
158
DGL requires Python 3.5 or later.
Gan Quan's avatar
Gan Quan committed
159

160
Right now, DGL works on [PyTorch](https://pytorch.org) 1.2.0+, [MXNet](https://mxnet.apache.org) 1.5.1+, and [TensorFlow](https://tensorflow.org) 2.1.0+.
Gan Quan's avatar
Gan Quan committed
161
162
163
164
165


### Using anaconda

```
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
166
167
168
169
conda install -c dglteam dgl           # cpu version
conda install -c dglteam dgl-cuda9.0   # CUDA 9.0
conda install -c dglteam dgl-cuda9.2   # CUDA 9.2
conda install -c dglteam dgl-cuda10.0  # CUDA 10.0
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
170
conda install -c dglteam dgl-cuda10.1  # CUDA 10.1
Gan Quan's avatar
Gan Quan committed
171
172
173
174
```

### Using pip

175
176
177
178
179
180
181
182

|           | Latest Nightly Build Version  | Stable Version          |
|-----------|-------------------------------|-------------------------|
| CPU       | `pip install --pre dgl`       | `pip install dgl`       |
| CUDA 9.0  | `pip install --pre dgl-cu90`  | `pip install dgl-cu90`  |
| CUDA 9.2  | `pip install --pre dgl-cu92`  | `pip install dgl-cu92`  |
| CUDA 10.0 | `pip install --pre dgl-cu100` | `pip install dgl-cu100` |
| CUDA 10.1 | `pip install --pre dgl-cu101` | `pip install dgl-cu101` |
Gan Quan's avatar
Gan Quan committed
183

Minjie Wang's avatar
Minjie Wang committed
184
### Built from source code
Gan Quan's avatar
Gan Quan committed
185
186
187
188

Refer to the guide [here](https://docs.dgl.ai/install/index.html#install-from-source).


Minjie Wang's avatar
Minjie Wang committed
189
## DGL Major Releases
Gan Quan's avatar
Gan Quan committed
190

Minjie Wang's avatar
Minjie Wang committed
191
192
193
194
195
196
| Releases  | Date   | Features |
|-----------|--------|-------------------------|
| v0.4.2      | 01/24/2020 |  - Heterograph support <br> - TensorFlow support (experimental) <br> - MXNet GNN modules <br> | 
| v0.3.1 | 08/23/2019 | - APIs for GNN modules <br> - Model zoo (DGL-Chem) <br> - New installation |
| v0.2 | 03/09/2019 | - Graph sampling APIs <br> - Speed improvement |
| v0.1 | 12/07/2018 | - Basic DGL APIs <br> - PyTorch and MXNet support <br> - GNN model examples and tutorials |
Gan Quan's avatar
Gan Quan committed
197

Minjie Wang's avatar
Minjie Wang committed
198
## New to Deep Learning and Graph Deep Learning?
Gan Quan's avatar
Gan Quan committed
199

Minjie Wang's avatar
Minjie Wang committed
200
Check out the open source book [*Dive into Deep Learning*](http://gluon.ai/).
201

António Almeida's avatar
António Almeida committed
202
For those who are new to graph neural network, please see the [basic of DGL](https://docs.dgl.ai/tutorials/basics/index.html).
203

Minjie Wang's avatar
Minjie Wang committed
204
For audience who are looking for more advanced, realistic, and end-to-end examples, please see [model tutorials](https://docs.dgl.ai/tutorials/models/index.html).
205
206


Gan Quan's avatar
Gan Quan committed
207
208
## Contributing

Lingfan Yu's avatar
Lingfan Yu committed
209
Please let us know if you encounter a bug or have any suggestions by [filing an issue](https://github.com/dmlc/dgl/issues).
Gan Quan's avatar
Gan Quan committed
210
211

We welcome all contributions from bug fixes to new features and extensions.
Minjie Wang's avatar
Minjie Wang committed
212

213
We expect all contributions discussed in the issue tracker and going through PRs.  Please refer to our [contribution guide](https://docs.dgl.ai/contribute.html).
Gan Quan's avatar
Gan Quan committed
214

215
216
217
218
219
220
221
## Cite

If you use DGL in a scientific publication, we would appreciate citations to the following paper:
```
@article{wang2019dgl,
    title={Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs},
    url={https://arxiv.org/abs/1909.01315},
Jacob Stevens's avatar
Jacob Stevens committed
222
    author={Wang, Minjie and Yu, Lingfan and Zheng, Da and Gan, Quan and Gai, Yu and Ye, Zihao and Li, Mufei and Zhou, Jinjing and Huang, Qi and Ma, Chao and Huang, Ziyue and Guo, Qipeng and Zhang, Hao and Lin, Haibin and Zhao, Junbo and Li, Jinyang and Smola, Alexander J and Zhang, Zheng},
223
224
225
226
    journal={ICLR Workshop on Representation Learning on Graphs and Manifolds},
    year={2019}
}
```
227

Gan Quan's avatar
Gan Quan committed
228
229
## The Team

VoVAllen's avatar
VoVAllen committed
230
DGL is developed and maintained by [NYU, NYU Shanghai, AWS Shanghai AI Lab, and AWS MXNet Science Team](https://www.dgl.ai/pages/about.html).
Gan Quan's avatar
Gan Quan committed
231

232

Gan Quan's avatar
Gan Quan committed
233
234
235
## License

DGL uses Apache License 2.0.