spmat_op_impl_coo.cc 19.8 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief CPU implementation of COO sparse matrix operators
 */
#include <vector>
#include <unordered_set>
#include <unordered_map>
9
#include <tuple>
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include "array_utils.h"

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

/*
 * TODO(BarclayII):
 * For row-major sorted COOs, we have faster implementation with binary search,
 * sorted search, etc.  Later we should benchmark how much we can gain with
 * sorted COOs on hypersparse graphs.
 */

///////////////////////////// COOIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < coo.num_cols) << "Invalid col index: " << col;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row && coo_col_data[i] == col)
      return true;
  }
  return false;
}

template bool COOIsNonZero<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template bool COOIsNonZero<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const int64_t kmax = std::max(rowlen, collen);
#pragma omp parallel for
  for (int64_t k = 0; k < kmax; ++k) {
    int64_t i = row_stride * k;
    int64_t j = col_stride * k;
    rst_data[k] = COOIsNonZero<XPU, IdType>(coo, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray COOIsNonZero<kDLCPU, int32_t>(COOMatrix, NDArray, NDArray);
template NDArray COOIsNonZero<kDLCPU, int64_t>(COOMatrix, NDArray, NDArray);

///////////////////////////// COOHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo) {
  std::unordered_set<std::pair<IdType, IdType>, PairHash> hashmap;
  const IdType* src_data = static_cast<IdType*>(coo.row->data);
  const IdType* dst_data = static_cast<IdType*>(coo.col->data);
  const auto nnz = coo.row->shape[0];
  for (IdType eid = 0; eid < nnz; ++eid) {
    const auto& p = std::make_pair(src_data[eid], dst_data[eid]);
    if (hashmap.count(p)) {
      return true;
    } else {
      hashmap.insert(p);
    }
  }
  return false;
}

template bool COOHasDuplicate<kDLCPU, int32_t>(COOMatrix coo);
template bool COOHasDuplicate<kDLCPU, int64_t>(COOMatrix coo);

///////////////////////////// COOGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  int64_t result = 0;
  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row)
      ++result;
  }
  return result;
}

template int64_t COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, int64_t);
template int64_t COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray COOGetRowNNZ(COOMatrix coo, NDArray rows) {
109
  CHECK_SAME_DTYPE(coo.col, rows);
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
#pragma omp parallel for
  for (int64_t i = 0; i < len; ++i)
    rst_data[i] = COOGetRowNNZ<XPU, IdType>(coo, vid_data[i]);
  return rst;
}

template NDArray COOGetRowNNZ<kDLCPU, int32_t>(COOMatrix, NDArray);
template NDArray COOGetRowNNZ<kDLCPU, int64_t>(COOMatrix, NDArray);

///////////////////////////// COOGetRowDataAndIndices /////////////////////////////

125
template <DLDeviceType XPU, typename IdType>
126
127
128
129
130
131
std::pair<NDArray, NDArray> COOGetRowDataAndIndices(
    COOMatrix coo, int64_t row) {
  CHECK(row >= 0 && row < coo.num_rows) << "Invalid row index: " << row;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
132
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
133
134

  std::vector<IdType> indices;
135
  std::vector<IdType> data;
136
137
138
139
140
141
142
143
144
145
146
147

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    if (coo_row_data[i] == row) {
      indices.push_back(coo_col_data[i]);
      data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return std::make_pair(NDArray::FromVector(data), NDArray::FromVector(indices));
}

template std::pair<NDArray, NDArray>
148
COOGetRowDataAndIndices<kDLCPU, int32_t>(COOMatrix, int64_t);
149
template std::pair<NDArray, NDArray>
150
COOGetRowDataAndIndices<kDLCPU, int64_t>(COOMatrix, int64_t);
151
152
153

///////////////////////////// COOGetData /////////////////////////////

154
template <DLDeviceType XPU, typename IdType>
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
IdArray COOGetData(COOMatrix coo, IdArray rows, IdArray cols) {
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];
  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col Id array:" << rows << " " << cols;
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = rows.Ptr<IdType>();
  const IdType* col_data = cols.Ptr<IdType>();

  const IdType* coo_row = coo.row.Ptr<IdType>();
  const IdType* coo_col = coo.col.Ptr<IdType>();
  const IdType* data = COOHasData(coo) ? coo.data.Ptr<IdType>() : nullptr;
  const int64_t nnz = coo.row->shape[0];

  const int64_t retlen = std::max(rowlen, collen);
  IdArray ret = Full(-1, retlen, rows->dtype.bits, rows->ctx);
  IdType* ret_data = ret.Ptr<IdType>();

  // TODO(minjie): We might need to consider sorting the COO beforehand especially
  //   when the number of (row, col) pairs is large. Need more benchmarks to justify
  //   the choice.

  if (coo.row_sorted) {
#pragma omp parallel for
    for (int64_t p = 0; p < retlen; ++p) {
      const IdType row_id = row_data[p * row_stride], col_id = col_data[p * col_stride];
      auto it = std::lower_bound(coo_row, coo_row + nnz, row_id);
      for (; it < coo_row + nnz && *it == row_id; ++it) {
        const auto idx = it - coo_row;
        if (coo_col[idx] == col_id) {
          ret_data[p] = data? data[idx] : idx;
          break;
        }
      }
    }
  } else {
#pragma omp parallel for
    for (int64_t p = 0; p < retlen; ++p) {
      const IdType row_id = row_data[p * row_stride], col_id = col_data[p * col_stride];
      for (int64_t idx = 0; idx < nnz; ++idx) {
        if (coo_row[idx] == row_id && coo_col[idx] == col_id) {
          ret_data[p] = data? data[idx] : idx;
          break;
        }
      }
    }
202
  }
203
204

  return ret;
205
206
}

207
208
template IdArray COOGetData<kDLCPU, int32_t>(COOMatrix, IdArray, IdArray);
template IdArray COOGetData<kDLCPU, int64_t>(COOMatrix, IdArray, IdArray);
209
210
211

///////////////////////////// COOGetDataAndIndices /////////////////////////////

212
template <DLDeviceType XPU, typename IdType>
213
214
215
216
std::vector<NDArray> COOGetDataAndIndices(COOMatrix coo, NDArray rows,
                                          NDArray cols) {
  CHECK_SAME_DTYPE(coo.col, rows);
  CHECK_SAME_DTYPE(coo.col, cols);
217
218
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];
219
  const int64_t len = std::max(rowlen, collen);
220
221
222
223
224
225
226
227
228
229
230

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
231
  const IdType* data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
232
233

  std::vector<IdType> ret_rows, ret_cols;
234
  std::vector<IdType> ret_data;
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  ret_rows.reserve(len);
  ret_cols.reserve(len);
  ret_data.reserve(len);

  // NOTE(BarclayII): With a small number of lookups, linear scan is faster.
  // The threshold 200 comes from benchmarking both algorithms on a P3.8x instance.
  // I also tried sorting plus binary search.  The speed gain is only significant for
  // medium-sized graphs and lookups, so I didn't include it.
  if (len >= 200) {
    // TODO(BarclayII) Ideally we would want to cache this object.  However I'm not sure
    // what is the best way to do so since this object is valid for CPU only.
    std::unordered_multimap<std::pair<IdType, IdType>, IdType, PairHash> pair_map;
    pair_map.reserve(coo.row->shape[0]);
    for (int64_t k = 0; k < coo.row->shape[0]; ++k)
      pair_map.emplace(std::make_pair(coo_row_data[k], coo_col_data[k]), data ? data[k]: k);

    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      auto range = pair_map.equal_range({row_id, col_id});
      for (auto it = range.first; it != range.second; ++it) {
257
258
        ret_rows.push_back(row_id);
        ret_cols.push_back(col_id);
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        ret_data.push_back(it->second);
      }
    }
  } else {
    for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
      const IdType row_id = row_data[i], col_id = col_data[j];
      CHECK(row_id >= 0 && row_id < coo.num_rows) << "Invalid row index: " << row_id;
      CHECK(col_id >= 0 && col_id < coo.num_cols) << "Invalid col index: " << col_id;
      for (int64_t k = 0; k < coo.row->shape[0]; ++k) {
        if (coo_row_data[k] == row_id && coo_col_data[k] == col_id) {
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
          ret_data.push_back(data ? data[k] : k);
        }
273
274
275
276
277
278
279
280
281
      }
    }
  }

  return {NDArray::FromVector(ret_rows),
          NDArray::FromVector(ret_cols),
          NDArray::FromVector(ret_data)};
}

282
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int32_t>(
283
    COOMatrix coo, NDArray rows, NDArray cols);
284
template std::vector<NDArray> COOGetDataAndIndices<kDLCPU, int64_t>(
285
286
287
288
    COOMatrix coo, NDArray rows, NDArray cols);

///////////////////////////// COOTranspose /////////////////////////////

289
template <DLDeviceType XPU, typename IdType>
290
291
292
293
COOMatrix COOTranspose(COOMatrix coo) {
  return COOMatrix{coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data};
}

294
295
template COOMatrix COOTranspose<kDLCPU, int32_t>(COOMatrix coo);
template COOMatrix COOTranspose<kDLCPU, int64_t>(COOMatrix coo);
296
297
298
299

///////////////////////////// COOToCSR /////////////////////////////

// complexity: time O(NNZ), space O(1)
300
template <DLDeviceType XPU, typename IdType>
301
302
303
304
305
CSRMatrix COOToCSR(COOMatrix coo) {
  const int64_t N = coo.num_rows;
  const int64_t NNZ = coo.row->shape[0];
  const IdType* row_data = static_cast<IdType*>(coo.row->data);
  const IdType* col_data = static_cast<IdType*>(coo.col->data);
306
  const IdType* data = COOHasData(coo)? static_cast<IdType*>(coo.data->data) : nullptr;
307

308
  NDArray ret_indptr = NDArray::Empty({N + 1}, coo.row->dtype, coo.row->ctx);
309
310
  NDArray ret_indices;
  NDArray ret_data;
311

312
313
314
315
316
317
  bool row_sorted = coo.row_sorted;
  bool col_sorted = coo.col_sorted;
  if (!row_sorted) {
    // It is possible that the flag is simply not set (default value is false),
    // so we still perform a linear scan to check the flag.
    std::tie(row_sorted, col_sorted) = COOIsSorted(coo);
318
319
  }

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
  if (row_sorted) {
    // compute indptr
    IdType* Bp = static_cast<IdType*>(ret_indptr->data);
    Bp[0] = 0;
    int64_t j = 0;
    for (int64_t i = 0; i < N; ++i) {
      const int64_t k = j;
      for (; j < NNZ && row_data[j] == i; ++j) {}
      Bp[i + 1] = Bp[i] + j - k;
    }

    // TODO(minjie): Many of our current implementation assumes that CSR must have
    //   a data array. This is a temporary workaround. Remove this after:
    //   - The old immutable graph implementation is deprecated.
    //   - The old binary reduce kernel is deprecated.
    if (!COOHasData(coo))
      coo.data = aten::Range(0, NNZ, coo.row->dtype.bits, coo.row->ctx);
337

338
    // compute indices and data
339
340
341
    ret_indices = coo.col;
    ret_data = coo.data;
  } else {
342
343
    // compute indptr
    IdType* Bp = static_cast<IdType*>(ret_indptr->data);
344
    *(Bp++) = 0;
345
346
347
348
349
350
351
352
353
354
355
356
357
    std::fill(Bp, Bp + N, 0);
    for (int64_t i = 0; i < NNZ; ++i) {
      Bp[row_data[i]]++;
    }

    // cumsum
    for (int64_t i = 0, cumsum = 0; i < N; ++i) {
      const IdType temp = Bp[i];
      Bp[i] = cumsum;
      cumsum += temp;
    }

    // compute indices and data
358
359
360
361
362
363
364
365
366
367
368
    ret_indices = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    ret_data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
    IdType* Bi = static_cast<IdType*>(ret_indices->data);
    IdType* Bx = static_cast<IdType*>(ret_data->data);

    for (int64_t i = 0; i < NNZ; ++i) {
      const IdType r = row_data[i];
      Bi[Bp[r]] = col_data[i];
      Bx[Bp[r]] = data? data[i] : i;
      Bp[r]++;
    }
369
370
  }

371
372
  return CSRMatrix(coo.num_rows, coo.num_cols,
                   ret_indptr, ret_indices, ret_data,
373
                   col_sorted);
374
375
}

376
377
template CSRMatrix COOToCSR<kDLCPU, int32_t>(COOMatrix coo);
template CSRMatrix COOToCSR<kDLCPU, int64_t>(COOMatrix coo);
378
379
380

///////////////////////////// COOSliceRows /////////////////////////////

381
template <DLDeviceType XPU, typename IdType>
382
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
383
  // TODO(minjie): use binary search when coo.row_sorted is true
384
385
386
387
388
  CHECK(start >= 0 && start < coo.num_rows) << "Invalid start row " << start;
  CHECK(end > 0 && end <= coo.num_rows) << "Invalid end row " << end;

  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
389
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
390
391

  std::vector<IdType> ret_row, ret_col;
392
  std::vector<IdType> ret_data;
393
394
395
396
397
398
399
400
401
402

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    if (row_id < end && row_id >= start) {
      ret_row.push_back(row_id - start);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }
403
  return COOMatrix(
404
405
406
407
    end - start,
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
408
409
410
    NDArray::FromVector(ret_data),
    coo.row_sorted,
    coo.col_sorted);
411
412
}

413
414
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix, int64_t, int64_t);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix, int64_t, int64_t);
415

416
template <DLDeviceType XPU, typename IdType>
417
418
419
COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
420
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
421
422

  std::vector<IdType> ret_row, ret_col;
423
  std::vector<IdType> ret_data;
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

  IdHashMap<IdType> hashmap(rows);

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = hashmap.Map(row_id, -1);
    if (mapped_row_id != -1) {
      ret_row.push_back(mapped_row_id);
      ret_col.push_back(col_id);
      ret_data.push_back(coo_data ? coo_data[i] : i);
    }
  }

  return COOMatrix{
    rows->shape[0],
    coo.num_cols,
    NDArray::FromVector(ret_row),
    NDArray::FromVector(ret_col),
443
444
    NDArray::FromVector(ret_data),
    coo.row_sorted, coo.col_sorted};
445
446
}

447
448
template COOMatrix COOSliceRows<kDLCPU, int32_t>(COOMatrix , NDArray);
template COOMatrix COOSliceRows<kDLCPU, int64_t>(COOMatrix , NDArray);
449
450
451

///////////////////////////// COOSliceMatrix /////////////////////////////

452
template <DLDeviceType XPU, typename IdType>
453
454
455
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols) {
  const IdType* coo_row_data = static_cast<IdType*>(coo.row->data);
  const IdType* coo_col_data = static_cast<IdType*>(coo.col->data);
456
  const IdType* coo_data = COOHasData(coo) ? static_cast<IdType*>(coo.data->data) : nullptr;
457
458
459
460

  IdHashMap<IdType> row_map(rows), col_map(cols);

  std::vector<IdType> ret_row, ret_col;
461
  std::vector<IdType> ret_data;
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

  for (int64_t i = 0; i < coo.row->shape[0]; ++i) {
    const IdType row_id = coo_row_data[i];
    const IdType col_id = coo_col_data[i];
    const IdType mapped_row_id = row_map.Map(row_id, -1);
    if (mapped_row_id != -1) {
      const IdType mapped_col_id = col_map.Map(col_id, -1);
      if (mapped_col_id != -1) {
        ret_row.push_back(mapped_row_id);
        ret_col.push_back(mapped_col_id);
        ret_data.push_back(coo_data ? coo_data[i] : i);
      }
    }
  }

477
478
479
480
481
  return COOMatrix(rows->shape[0], cols->shape[0],
                   NDArray::FromVector(ret_row),
                   NDArray::FromVector(ret_col),
                   NDArray::FromVector(ret_data),
                   coo.row_sorted, coo.col_sorted);
482
483
}

484
template COOMatrix COOSliceMatrix<kDLCPU, int32_t>(
485
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);
486
template COOMatrix COOSliceMatrix<kDLCPU, int64_t>(
487
488
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

///////////////////////////// COOReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(coo.row, new_row_id_arr);
  CHECK_SAME_DTYPE(coo.col, new_col_id_arr);

  // Input COO
  const IdType* in_rows = static_cast<IdType*>(coo.row->data);
  const IdType* in_cols = static_cast<IdType*>(coo.col->data);
  int64_t num_rows = coo.num_rows;
  int64_t num_cols = coo.num_cols;
  int64_t nnz = coo.row->shape[0];
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of COO";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of COO";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output COO
  NDArray out_row_arr = NDArray::Empty({nnz}, coo.row->dtype, coo.row->ctx);
  NDArray out_col_arr = NDArray::Empty({nnz}, coo.col->dtype, coo.col->ctx);
  NDArray out_data_arr = COOHasData(coo) ? coo.data : NullArray();
  IdType *out_row = static_cast<IdType*>(out_row_arr->data);
  IdType *out_col = static_cast<IdType*>(out_col_arr->data);

#pragma omp parallel for
  for (int64_t i = 0; i < nnz; i++) {
    out_row[i] = new_row_ids[in_rows[i]];
    out_col[i] = new_col_ids[in_cols[i]];
  }
  return COOMatrix(num_rows, num_cols, out_row_arr, out_col_arr, out_data_arr);
}

template COOMatrix COOReorder<kDLCPU, int64_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template COOMatrix COOReorder<kDLCPU, int32_t>(COOMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

533
534
535
}  // namespace impl
}  // namespace aten
}  // namespace dgl