csc_sampling_graph.cc 37.7 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <cmath>
#include <limits>
13
14
#include <tuple>
#include <vector>
15

16
#include "./random.h"
17
18
#include "./shared_memory_utils.h"

19
20
21
22
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
23
    const torch::Tensor& indptr, const torch::Tensor& indices,
24
    const torch::optional<torch::Tensor>& node_type_offset,
25
26
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
27
    : indptr_(indptr),
28
      indices_(indices),
29
      node_type_offset_(node_type_offset),
30
31
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
32
33
34
35
36
37
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
38
    const torch::Tensor& indptr, const torch::Tensor& indices,
39
    const torch::optional<torch::Tensor>& node_type_offset,
40
41
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
42
43
44
45
46
47
48
49
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
50
51
52
53
54
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
55
  return c10::make_intrusive<CSCSamplingGraph>(
56
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
57
58
}

59
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
60
61
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
62
63
64
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
65
66
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
67
68
69
70
71
72
73
74
75
76
77
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
78
79
80
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
81
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
82
83
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
84
85
86
87
88
89
90
91
92
93
94
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
95
96
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
127
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
128
129
130
131
132
133
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
 * @return A lambda function: (int64_t offset, int64_t num_neighbors) ->
191
192
193
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns a tensor of
 * picked neighbors.
194
 */
195
template <SamplerType S>
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
             int64_t offset, int64_t num_neighbors) {
    // If fanouts.size() > 1, perform sampling for each edge type of each node;
    // otherwise just sample once for each node with no regard of edge types.
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
          type_per_edge.value(), probs_or_mask, args);
    } else {
      return Pick(
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
          args);
    }
  };
}

217
template <typename NumPickFn, typename PickFn>
218
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
219
220
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
221
  const int64_t num_nodes = nodes.size(0);
222
223
  const int64_t num_threads = torch::get_num_threads();
  std::vector<torch::Tensor> picked_neighbors_per_thread(num_threads);
224
225
226
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

227
228
229
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
230
231
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "parallel_for", ([&] {
232
233
234
235
236
237
238
239
240
241
        torch::parallel_for(
            0, num_nodes, grain_size, [&](scalar_t begin, scalar_t end) {
              const auto indptr_options = indptr_.options();
              const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
              // Get current thread id.
              auto thread_id = torch::get_thread_num();
              int64_t local_grain_size = end - begin;
              std::vector<torch::Tensor> picked_neighbors_cur_thread(
                  local_grain_size);

242
              const auto nodes_data_ptr = nodes.data_ptr<int64_t>();
243
              for (scalar_t i = begin; i < end; ++i) {
244
                const auto nid = nodes_data_ptr[i];
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

                if (num_neighbors == 0) {
                  // To avoid crashing during concatenation in the master
                  // thread, initializing with empty tensors.
                  picked_neighbors_cur_thread[i - begin] =
                      torch::tensor({}, indptr_options);
                  continue;
                }

260
261
262
263
                picked_neighbors_cur_thread[i - begin] =
                    pick_fn(offset, num_neighbors);

                // This number should be the same as the result of num_pick_fn.
264
265
                num_picked_neighbors_per_node[i + 1] =
                    picked_neighbors_cur_thread[i - begin].size(0);
266
267
268
269
270
                TORCH_CHECK(
                    *num_picked_neighbors_per_node[i + 1].data_ptr<int64_t>() ==
                        num_pick_fn(offset, num_neighbors),
                    "Return value of num_pick_fn doesn't match the actual "
                    "picked number.");
271
272
273
274
              }
              picked_neighbors_per_thread[thread_id] =
                  torch::cat(picked_neighbors_cur_thread);
            });  // End of parallel_for.
275
      }));
276
277
278
  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

279
  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_thread);
280
281
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);
282
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
283
  if (type_per_edge_.has_value()) {
284
285
    subgraph_type_per_edge =
        torch::index_select(type_per_edge_.value(), 0, picked_eids);
286
  }
287
288
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
289
  return c10::make_intrusive<SampledSubgraph>(
290
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
291
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
292
293
}

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
309

310
311
312
313
314
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
315
        nodes, return_eids,
316
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
317
318
319
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
320
321
322
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
323
        nodes, return_eids,
324
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
325
326
327
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
328
329
330
  }
}

331
332
333
334
335
336
337
338
339
340
341
342
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

343
344
345
346
347
348
349
350
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
351
      optional_tensors[2], optional_tensors[3], torch::nullopt);
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t num_valid_neighbors =
      probs_or_mask.has_value()
          ? *torch::count_nonzero(
                 probs_or_mask.value().slice(0, offset, offset + num_neighbors))
                 .data_ptr<int64_t>()
          : num_neighbors;
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

417
418
419
420
421
422
423
424
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
425
426
427
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
428
429
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
430
 * @param replace Boolean indicating whether the sample is performed with or
431
432
433
434
435
436
437
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor UniformPick(
438
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
439
440
    const torch::TensorOptions& options) {
  torch::Tensor picked_neighbors;
441
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
442
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
443
444
445
  } else if (replace) {
    picked_neighbors =
        torch::randint(offset, offset + num_neighbors, {fanout}, options);
446
  } else {
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    picked_neighbors = torch::empty({fanout}, options);
    AT_DISPATCH_INTEGRAL_TYPES(
        picked_neighbors.scalar_type(), "UniformPick", ([&] {
          scalar_t* picked_neighbors_data =
              picked_neighbors.data_ptr<scalar_t>();
          // We use different sampling strategies for different sampling case.
          if (fanout >= num_neighbors / 10) {
            // [Algorithm]
            // This algorithm is conceptually related to the Fisher-Yates
            // shuffle.
            //
            // [Complexity Analysis]
            // This algorithm's memory complexity is O(num_neighbors), but
            // it generates fewer random numbers (O(fanout)).
            //
            // (Compare) Reservoir algorithm is one of the most classical
            // sampling algorithms. Both the reservoir algorithm and our
            // algorithm offer distinct advantages, we need to compare to
            // illustrate our trade-offs.
            // The reservoir algorithm is memory-efficient (O(fanout)) but
            // creates many random numbers (O(num_neighbors)), which is
            // costly.
            //
            // [Practical Consideration]
            // Use this algorithm when `fanout >= num_neighbors / 10` to
            // reduce computation.
            // In this scenarios above, memory complexity is not a concern due
            // to the small size of both `fanout` and `num_neighbors`. And it
            // is efficient to allocate a small amount of memory. So the
            // algorithm performence is great in this case.
            std::vector<scalar_t> seq(num_neighbors);
            // Assign the seq with [offset, offset + num_neighbors].
            std::iota(seq.begin(), seq.end(), offset);
            for (int64_t i = 0; i < fanout; ++i) {
              auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
              std::swap(seq[i], seq[j]);
            }
            // Save the randomly sampled fanout elements to the output tensor.
            std::copy(seq.begin(), seq.begin() + fanout, picked_neighbors_data);
          } else if (fanout < 64) {
            // [Algorithm]
            // Use linear search to verify uniqueness.
            //
            // [Complexity Analysis]
            // Since the set of numbers is small (up to 64), so it is more
            // cost-effective for the CPU to use this algorithm.
            auto begin = picked_neighbors_data;
            auto end = picked_neighbors_data + fanout;

            while (begin != end) {
              // Put the new random number in the last position.
              *begin = RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors);
              // Check if a new value doesn't exist in current
              // range(picked_neighbors_data, begin). Otherwise get a new
              // value until we haven't unique range of elements.
              auto it = std::find(picked_neighbors_data, begin, *begin);
              if (it == begin) ++begin;
            }
          } else {
            // [Algorithm]
            // Use hash-set to verify uniqueness. In the best scenario, the
            // time complexity is O(fanout), assuming no conflicts occur.
            //
            // [Complexity Analysis]
            // Let K = (fanout / num_neighbors), the expected number of extra
            // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
            // means in the worst case scenario, the time complexity is
            // O(num_neighbors^2).
            //
            // [Practical Consideration]
            // In practice, we set the threshold K to 1/10. This trade-off is
            // due to the slower performance of std::unordered_set, which
            // would otherwise increase the sampling cost. By doing so, we
            // achieve a balance between theoretical efficiency and practical
            // performance.
            std::unordered_set<scalar_t> picked_set;
            while (static_cast<int64_t>(picked_set.size()) < fanout) {
              picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors));
            }
            std::copy(
                picked_set.begin(), picked_set.end(), picked_neighbors_data);
          }
        }));
532
533
534
535
  }
  return picked_neighbors;
}

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
554
555
556
557
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
558
559
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
560
 * @param replace Boolean indicating whether the sample is performed with or
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor NonUniformPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  torch::Tensor picked_neighbors;
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::tensor({}, options);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
    picked_neighbors =
        torch::index_select(picked_neighbors, 0, positive_probs_indices);
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
    picked_neighbors =
        torch::multinomial(local_probs, fanout, replace) + offset;
  }
  return picked_neighbors;
}

593
594
template <>
torch::Tensor Pick<SamplerType::NEIGHBOR>(
595
596
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
597
598
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::NEIGHBOR> args) {
599
600
601
602
603
604
605
606
  if (probs_or_mask.has_value()) {
    return NonUniformPick(
        offset, num_neighbors, fanout, replace, options, probs_or_mask);
  } else {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
  }
}

607
template <SamplerType S>
608
609
610
torch::Tensor PickByEtype(
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
611
    const torch::Tensor& type_per_edge,
612
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
613
614
615
616
  std::vector<torch::Tensor> picked_neighbors(
      fanouts.size(), torch::tensor({}, options));
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
617
618
619
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
620
621
622
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
623
          TORCH_CHECK(
624
              etype >= 0 && etype < (int64_t)fanouts.size(),
625
              "Etype values exceed the number of fanouts.");
626
          int64_t fanout = fanouts[etype];
627
628
629
630
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
631
632
          // Do sampling for one etype.
          if (fanout != 0) {
633
            picked_neighbors[etype] = Pick<S>(
634
                etype_begin, etype_end - etype_begin, fanout, replace, options,
635
                probs_or_mask, args);
636
637
638
639
          }
          etype_begin = etype_end;
        }
      }));
640
641
642
643

  return torch::cat(picked_neighbors, 0);
}

644
645
646
647
648
649
650
651
template <>
torch::Tensor Pick<SamplerType::LABOR>(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  if (fanout == 0) return torch::tensor({}, options);
  if (probs_or_mask.has_value()) {
652
653
654
655
    if (fanout < 0) {
      return NonUniformPick(
          offset, num_neighbors, fanout, replace, options, probs_or_mask);
    }
656
657
658
659
660
661
662
663
664
665
666
667
    torch::Tensor picked_neighbors;
    AT_DISPATCH_FLOATING_TYPES(
        probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
          if (replace) {
            picked_neighbors = LaborPick<true, true, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          } else {
            picked_neighbors = LaborPick<true, false, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          }
        }));
    return picked_neighbors;
668
669
  } else if (fanout < 0) {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
670
671
  } else if (replace) {
    return LaborPick<false, true>(
672
673
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
674
675
  } else {  // replace = false
    return LaborPick<false, false>(
676
677
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
695
696
697
698
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
 *
 * @return A tensor containing the picked neighbors.
 */
template <bool NonUniform, bool Replace, typename T>
inline torch::Tensor LaborPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
716
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
    return torch::arange(offset, offset + num_neighbors, options);
  }
  torch::Tensor heap_tensor = torch::empty({fanout * 2}, torch::kInt32);
  // Assuming max_degree of a vertex is <= 4 billion.
  auto heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
      heap_tensor.data_ptr<int32_t>());
  const T* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<T>() + offset : nullptr;
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
          torch::Tensor remaining =
              torch::ones({num_neighbors}, torch::kFloat32);
          float* rem_data = remaining.data_ptr<float>();
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
                    args.random_seed, t, args.num_nodes, j, rem_data[i],
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, ++heap_end);
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
                  rem_data[i] = -1;
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            for (int64_t j = 0; j < init_count; j++) {
              const auto t = local_indices_data[i];
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            if (rem_data[i] == -1) continue;
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
  torch::Tensor picked_neighbors = torch::empty({fanout}, options);
  AT_DISPATCH_INTEGRAL_TYPES(
      picked_neighbors.scalar_type(), "LaborPickOutput", ([&] {
        scalar_t* picked_neighbors_data = picked_neighbors.data_ptr<scalar_t>();
        for (int64_t i = 0; i < fanout; ++i) {
          const auto [rnd, j] = heap_data[i];
          if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
            picked_neighbors_data[num_sampled++] = offset + j;
          }
        }
      }));
  TORCH_CHECK(
      !Replace || num_sampled == fanout || num_sampled == 0,
      "Sampling with replacement should sample exactly fanout neighbors or 0!");
  return picked_neighbors.narrow(0, 0, num_sampled);
}

855
856
}  // namespace sampling
}  // namespace graphbolt