test_sparse.py 7.46 KB
Newer Older
1
2
from dgl.backend import gspmm, gsddmm
from utils import parametrize_dtype
3
import dgl
4
import random
5
6
7
import pytest
import networkx as nx
import backend as F
8
9
import numpy as np 
from utils import parametrize_dtype
10

11
random.seed(42)
12
13
14
15
16
17
18
np.random.seed(42)

udf_msg = {
    'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
    'sub': lambda edges: {'m': edges.src['x'] - edges.data['w']},
    'mul': lambda edges: {'m': edges.src['x'] * edges.data['w']},
    'div': lambda edges: {'m': edges.src['x'] / edges.data['w']},
19
20
    'copy_lhs': lambda edges: {'m': edges.src['x']},
    'copy_rhs': lambda edges: {'m': edges.data['w']}
21
22
}

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def select(target, src, edge, dst):
    if target == 'u':
        return src
    elif target == 'v':
        return dst
    elif target == 'e':
        return edge

def binary_op(msg, x, y):
    if msg == 'add':
        return x + y
    elif msg == 'sub':
        return x - y
    elif msg == 'mul':
        return x * y
    elif msg == 'div':
        return x / y
    elif msg == 'dot':
        return F.sum(x * y, -1, keepdims=True)
    elif msg == 'copy_lhs':
        return x
    elif msg == 'copy_rhs':
        return y

def edge_func(lhs_target, rhs_target, msg):
    def foo(edges):
        return {
            'm': binary_op(
                msg,
                select(lhs_target, edges.src, edges.data, edges.dst)['x'],
                select(rhs_target, edges.src, edges.data, edges.dst)['y']
            )
        }
    return foo

58
udf_apply_edges = {
59
60
61
62
    lhs_target + '_' + msg + '_' + rhs_target: edge_func(lhs_target, rhs_target, msg)
    for lhs_target in ['u', 'v', 'e']
    for rhs_target in ['u', 'v', 'e']
    for msg in ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs']
63
64
65
66
67
68
69
70
71
}

udf_reduce = {
    'sum': lambda nodes: {'v': F.sum(nodes.mailbox['m'], 1)},
    'min': lambda nodes: {'v': F.min(nodes.mailbox['m'], 1)},
    'max': lambda nodes: {'v': F.max(nodes.mailbox['m'], 1)}
}

graphs = [
72
#    dgl.rand_graph(30, 0),
73
74
75
76
77
78
79
80
81
82
    dgl.rand_graph(100, 30),
    dgl.rand_graph(100, 3000),
    dgl.rand_bipartite(80, 160, 3000)
]

spmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 1)),
    ((1, 3, 1), (4, 1, 3)),
    ((3, 3), (1, 3)),
83
84
85
    ((1,), (3,)),
    ((3,), (1,)),
    ((1,), (1,))
86
87
88
89
90
91
92
93
]

sddmm_shapes = [
    ((1, 2, 1, 3, 1), (4, 1, 3, 1, 1)),
    ((5, 3, 1, 7), (1, 3, 7, 7)),
    ((1, 3, 3), (4, 1, 3)),
    ((3, 3), (1, 3)),
    ((3,), (3,)),
94
    ((1,), (1,))
95
96
97
98
]

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', spmm_shapes)
99
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'copy_lhs', 'copy_rhs'])
100
@pytest.mark.parametrize('reducer', ['sum', 'min', 'max'])
101
@parametrize_dtype
102
103
104
def test_spmm(idtype, g, shp, msg, reducer):
    g = g.astype(idtype).to(F.ctx())
    if dgl.backend.backend_name == 'tensorflow' and (reducer in ['min', 'max']):
105
        pytest.skip()  # tensorflow dlpack has problem writing into int32 arrays on GPU.
106
    print(g)
107
    print(g.idtype)
108

109
110
111
112
113
114
    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(),) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(),) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
115
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
        non_degree_indices = F.tensor(
            np.nonzero(F.asnumpy(g.in_degrees()) != 0)[0])
        v = F.gather_row(v, non_degree_indices)
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
            v1 = F.gather_row(g.dstdata['v'], non_degree_indices)
135
            assert F.allclose(v, v1)
136
137
138
139
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
140
141
142
                if reducer in ['min', 'max']: # there might be some numerical errors
                    rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
                           F.reduce_sum(F.abs(grad_u))
Zihao Ye's avatar
Zihao Ye committed
143
                    assert F.as_scalar(rate) < 1e-2, rate
144
145
                else:
                    assert F.allclose(F.grad(g.srcdata['x']), grad_u)
146
            if msg != 'copy_lhs':
147
148
149
                if reducer in ['min', 'max']:
                    rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
                           F.reduce_sum(F.abs(grad_e))
Zihao Ye's avatar
Zihao Ye committed
150
                    assert F.as_scalar(rate) < 1e-2, rate
151
152
                else:
                    assert F.allclose(F.grad(g.edata['w']), grad_e)
153
            print('backward passed')
154
155
156
157
158
159
160

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')

@pytest.mark.parametrize('g', graphs)
@pytest.mark.parametrize('shp', sddmm_shapes)
161
162
163
164
@pytest.mark.parametrize('lhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('rhs_target', ['u', 'v', 'e'])
@pytest.mark.parametrize('msg', ['add', 'sub', 'mul', 'div', 'dot', 'copy_lhs', 'copy_rhs'])
@parametrize_dtype
165
166
167
168
def test_sddmm(g, shp, lhs_target, rhs_target, msg, idtype):
    if lhs_target == rhs_target:
        return
    g = g.astype(idtype).to(F.ctx())
169
170
171
    if dgl.backend.backend_name == 'mxnet' and g.number_of_edges() == 0:
        pytest.skip()   # mxnet do not support zero shape tensor
    print(g)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    print(g.idtype)

    len_lhs = select(
        lhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    lhs_shp = (len_lhs,) + shp[0]
    len_rhs = select(
        rhs_target,
        g.number_of_src_nodes(),
        g.number_of_edges(),
        g.number_of_dst_nodes())
    rhs_shp = (len_rhs,) + shp[1]
    feat_lhs = F.tensor(np.random.rand(*lhs_shp) + 1)
    feat_rhs = F.tensor(np.random.rand(*rhs_shp) + 1)
    print('lhs shape: {}, rhs shape: {}'.format(F.shape(feat_lhs), F.shape(feat_rhs)))

    lhs_frame = select(
        lhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    rhs_frame = select(
        rhs_target,
        g.srcdata,
        g.edata,
        g.dstdata)
    lhs_frame['x'] = F.attach_grad(F.clone(feat_lhs))
    rhs_frame['y'] = F.attach_grad(F.clone(feat_rhs))
    msg_func = lhs_target + '_' + msg + '_' + rhs_target
    print('SDDMM(message func: {})'.format(msg_func))

    lhs = F.attach_grad(F.clone(feat_lhs))
    rhs = F.attach_grad(F.clone(feat_rhs))
    with F.record_grad():
        e = gsddmm(g, msg, lhs, rhs, lhs_target=lhs_target, rhs_target=rhs_target)
        F.backward(F.reduce_sum(e))
        grad_lhs = F.grad(lhs)
        grad_rhs = F.grad(rhs)

    with F.record_grad():
        g.apply_edges(udf_apply_edges[msg_func])
        if g.number_of_edges() > 0:
            e1 = g.edata['m']
217
            assert F.allclose(e, e1)
218
219
220
221
222
223
224
225
226
227
228
            print('forward passed')

            F.backward(F.reduce_sum(e1))
            if msg != 'copy_rhs':
                assert F.allclose(F.grad(lhs_frame['x']), grad_lhs)
            if msg != 'copy_lhs':
                assert F.allclose(F.grad(rhs_frame['y']), grad_rhs)
            print('backward passed')

    lhs_frame.pop('x')
    rhs_frame.pop('y')
229
230
    if 'm' in g.edata: g.edata.pop('m')

231
if __name__ == '__main__':
232
    test_spmm(F.int32, graphs[0], spmm_shapes[5], 'copy_lhs', 'sum')