"graphbolt/vscode:/vscode.git/clone" did not exist on "910cec0c82cf154cc378a46e6c89cdf068c018a3"
test_mp_dataloader.py 19.2 KB
Newer Older
1
2
3
import dgl
import unittest
import os
4
from scipy import sparse as spsp
5
6
7
8
9
10
11
from dgl.data import CitationGraphDataset
from dgl.distributed import sample_neighbors
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import time
12
from utils import get_local_usable_addr, reset_envs
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from pathlib import Path
from dgl.distributed import DistGraphServer, DistGraph, DistDataLoader
import pytest
import backend as F

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
                self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


def start_server(rank, tmpdir, disable_shared_mem, num_clients):
    import dgl
    print('server: #clients=' + str(num_clients))
44
    g = DistGraphServer(rank, "mp_ip_config.txt", 1, num_clients,
45
46
                        tmpdir / 'test_sampling.json', disable_shared_mem=disable_shared_mem,
                        graph_format=['csc', 'coo'])
47
48
49
    g.start()


50
def start_dist_dataloader(rank, tmpdir, num_server, drop_last, orig_nid, orig_eid):
51
52
    import dgl
    import torch as th
53
    dgl.distributed.initialize("mp_ip_config.txt")
54
    gpb = None
55
    disable_shared_mem = num_server > 0
56
    if disable_shared_mem:
57
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
58
59
60
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
61
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
62

63
64
65
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

66
67
68
69
    # Create sampler
    sampler = NeighborSampler(dist_graph, [5, 10],
                              dgl.distributed.sample_neighbors)

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
            drop_last=drop_last)

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
            for idx, blocks in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
                o_src, o_dst =  block.edges()
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
89
90
91
92
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
93
94
95
96
97
98
99
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id)
                assert np.all(F.asnumpy(has_edges))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
            if drop_last:
                assert np.max(max_nid) == num_nodes_to_sample - 1 - num_nodes_to_sample % batch_size
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
100
101
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
102
103
104
105

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
def test_standalone(tmpdir):
106
    reset_envs()
107
108
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(1):
109
        ip_config.write('{}\n'.format(get_local_usable_addr()))
110
111
112
113
114
115
116
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = 1
    num_hops = 1

117
118
119
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis', reshuffle=True,
                                         return_mapping=True)
120
121

    os.environ['DGL_DIST_MODE'] = 'standalone'
122
    try:
123
        start_dist_dataloader(0, tmpdir, 1, True, orig_nid, orig_eid)
124
125
    except Exception as e:
        print(e)
126
127
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def start_dist_neg_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    num_negs = 5
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5,10])
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.EdgeDataLoader(dist_graph,
                                                train_eid,
                                                sampler,
                                                batch_size=batch_size,
                                                negative_sampler=negative_sampler,
                                                shuffle=True,
                                                drop_last=False,
                                                num_workers=num_workers)
    for _ in range(2):
        for _, (_, pos_graph, neg_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                o_src, o_dst =  block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                assert np.all(F.asnumpy(has_edges))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID]))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID]))
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_neg_dataloader(g, tmpdir, num_server, num_workers):
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{}\n'.format(get_local_usable_addr()))
    ip_config.close()

    num_parts = num_server
    num_hops = 1
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)
    os.environ['DGL_DIST_MODE'] = 'distributed'
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
    ptrainer_list = []

    p = ctx.Process(target=start_dist_neg_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, g))
    p.start()
    ptrainer_list.append(p)

    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()
215
216
217
218

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
219
@pytest.mark.parametrize("num_workers", [0, 4])
220
@pytest.mark.parametrize("drop_last", [True, False])
221
222
@pytest.mark.parametrize("reshuffle", [True, False])
def test_dist_dataloader(tmpdir, num_server, num_workers, drop_last, reshuffle):
223
    reset_envs()
224
225
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
226
        ip_config.write('{}\n'.format(get_local_usable_addr()))
227
228
229
230
231
232
233
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

234
235
236
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=reshuffle, return_mapping=True)
237
238
239
240
241
242
243
244
245
246

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

247
    os.environ['DGL_DIST_MODE'] = 'distributed'
248
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
249
    ptrainer = ctx.Process(target=start_dist_dataloader, args=(
250
        0, tmpdir, num_server, drop_last, orig_nid, orig_eid))
251
252
253
254
255
256
    ptrainer.start()

    for p in pserver_list:
        p.join()
    ptrainer.join()

257
def start_node_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
258
259
    import dgl
    import torch as th
260
    dgl.distributed.initialize("mp_ip_config.txt")
261
    gpb = None
262
    disable_shared_mem = num_server > 1
263
    if disable_shared_mem:
264
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
265
266
267
    num_nodes_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
268
269
270
271
272
273
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
        train_nid = {'n3': th.arange(num_nodes_to_sample)}
274

275
276
277
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

278
    # Create sampler
279
280
281
282
    sampler = dgl.dataloading.MultiLayerNeighborSampler([
        # test dict for hetero
        {etype: 5 for etype in dist_graph.etypes} if len(dist_graph.etypes) > 1 else 5,
        10])        # test int for hetero
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.NodeDataLoader(
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (_, _, blocks) in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
299
300
301
302
303
304
305
306
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
307
308
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
309
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def start_edge_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.EdgeDataLoader(
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
                    assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_pair_graph.nodes[dst_type].data[dgl.NID]))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type):
364
365
366
367
368
369
370
    ip_config = open("mp_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{}\n'.format(get_local_usable_addr()))
    ip_config.close()

    num_parts = num_server
    num_hops = 1
371
372
373
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
374
375
376
377
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}
378
379
380
381
382
383
384
385
386
387
388

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    os.environ['DGL_DIST_MODE'] = 'distributed'
389
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
390
391
392
    ptrainer_list = []
    if dataloader_type == 'node':
        p = ctx.Process(target=start_node_dataloader, args=(
393
394
395
396
397
398
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
        p.start()
        ptrainer_list.append(p)
    elif dataloader_type == 'edge':
        p = ctx.Process(target=start_edge_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
399
400
401
402
403
404
405
        p.start()
        ptrainer_list.append(p)
    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
def test_dataloader(tmpdir, num_server, num_workers, dataloader_type):
428
    reset_envs()
429
430
431
432
433
    g = CitationGraphDataset("cora")[0]
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)
    g = create_random_hetero()
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)

434
435
436
437
438
439
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
def test_neg_dataloader(tmpdir, num_server, num_workers):
440
    reset_envs()
441
442
443
444
445
    g = CitationGraphDataset("cora")[0]
    check_neg_dataloader(g, tmpdir, num_server, num_workers)
    g = create_random_hetero()
    check_neg_dataloader(g, tmpdir, num_server, num_workers)

446
447
448
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
449
        test_standalone(Path(tmpdirname))
450
451
        test_dataloader(Path(tmpdirname), 3, 4, 'node')
        test_dataloader(Path(tmpdirname), 3, 4, 'edge')
452
        test_neg_dataloader(Path(tmpdirname), 3, 4)
453
454
455
456
        test_dist_dataloader(Path(tmpdirname), 3, 0, True, True)
        test_dist_dataloader(Path(tmpdirname), 3, 4, True, True)
        test_dist_dataloader(Path(tmpdirname), 3, 0, True, False)
        test_dist_dataloader(Path(tmpdirname), 3, 4, True, False)