ogb_example_ARGO.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
This is a modified version of: https://github.com/dmlc/dgl/blob/master/examples/pytorch/ogb/ogbn-products/graphsage/main.py
This example shows how to enable ARGO to automatically instantiate multi-processing and adjust CPU core assignment to achieve better performance.
"""

import argparse

import ctypes
import os
import time
from multiprocessing import RawValue

import dgl
import dgl.nn.pytorch as dglnn

import numpy as np
import torch as th
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tqdm
from argo import ARGO
from ogb.nodeproppred import DglNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel

avg_total = RawValue(ctypes.c_float, 0.0)


class SAGE(nn.Module):
    def __init__(
        self, in_feats, n_hidden, n_classes, n_layers, activation, dropout
    ):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, "mean"))
        for i in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, "mean"))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, "mean"))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
            h_dst = h[: block.num_dst_nodes()]
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst))
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h

    def inference(self, g, x, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.
        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        for l, layer in enumerate(self.layers):
            y = th.zeros(
                g.num_nodes(),
                self.n_hidden if l != len(self.layers) - 1 else self.n_classes,
            ).to(device)

            sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
            dataloader = dgl.dataloading.DataLoader(
                g,
                th.arange(g.num_nodes()),
                sampler,
                batch_size=args.batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=args.num_workers,
            )

            for input_nodes, output_nodes, blocks in tqdm.tqdm(
                dataloader, disable=None
            ):
                block = blocks[0].int().to(device)

                h = x[input_nodes]
                h_dst = h[: block.num_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h

            x = y
        return y


def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)


def evaluate(model, g, nfeat, labels, val_nid, test_nid, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.module.inference(g, nfeat, device)
    model.train()
    return (
        compute_acc(pred[val_nid], labels[val_nid]),
        compute_acc(pred[test_nid], labels[test_nid]),
        pred,
    )


def load_subtensor(nfeat, labels, seeds, input_nodes):
    """
    Extracts features and labels for a set of nodes.
    """
    batch_inputs = nfeat[input_nodes]
    batch_labels = labels[seeds]
    return batch_inputs, batch_labels


#### Entry point
def train(
    args,
    device,
    data,
    rank,
    world_size,
    comp_core,
    load_core,
    counter,
    b_size,
    ep,
):
    dist.init_process_group("gloo", rank=rank, world_size=world_size)
    # Unpack data
    train_nid, val_nid, test_nid, in_feats, labels, n_classes, nfeat, g = data

    # Create PyTorch DataLoader for constructing blocks
    sampler = dgl.dataloading.MultiLayerNeighborSampler(
        [int(fanout) for fanout in args.fan_out.split(",")]
    )
    dataloader = dgl.dataloading.DataLoader(
        g,
        train_nid,
        sampler,
        batch_size=b_size,
        shuffle=True,
        drop_last=False,
        num_workers=len(load_core),
        use_ddp=True,
    )

    # Define model and optimizer
    model = SAGE(
        in_feats,
        args.num_hidden,
        n_classes,
        args.num_layers,
        F.relu,
        args.dropout,
    )
    model = model.to(device)
    model = DistributedDataParallel(model)
    loss_fcn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)

    # Training loop
    avg = 0
    iter_tput = []
    best_eval_acc = 0
    best_test_acc = 0
    PATH = "model.pt"
    if counter[0] != 0:
        checkpoint = th.load(PATH)
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        epoch = checkpoint["epoch"]
        loss = checkpoint["loss"]

    with dataloader.enable_cpu_affinity(
        loader_cores=load_core, compute_cores=comp_core
    ):
        for epoch in range(ep):
            tic = time.time()

            # Loop over the dataloader to sample the computation dependency graph as a list of
            # blocks.
            for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
                tic_step = time.time()

                # copy block to gpu
                blocks = [blk.int().to(device) for blk in blocks]

                # Load the input features as well as output labels
                batch_inputs, batch_labels = load_subtensor(
                    nfeat, labels, seeds, input_nodes
                )

                # Compute loss and prediction
                batch_pred = model(blocks, batch_inputs)
                loss = loss_fcn(batch_pred, batch_labels)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                iter_tput.append(len(seeds) / (time.time() - tic_step))
                if step % args.log_every == 0 and step != 0:
                    acc = compute_acc(batch_pred, batch_labels)
                    print(
                        "Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}".format(
                            step,
                            loss.item(),
                            acc.item(),
                            np.mean(iter_tput[3:]),
                        )
                    )

            toc = time.time()
            print("Epoch Time(s): {:.4f}".format(toc - tic))

            if rank == 0:
                global avg_total
                avg_total.value += toc - tic
                avg += toc - tic

                if epoch % args.eval_every == 0 and epoch != 0:
                    eval_acc, test_acc, pred = evaluate(
                        model, g, nfeat, labels, val_nid, test_nid, device
                    )
                    if args.save_pred:
                        np.savetxt(
                            args.save_pred + "%02d" % epoch,
                            pred.argmax(1).cpu().numpy(),
                            "%d",
                        )
                    print("Eval Acc {:.4f}".format(eval_acc))
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_test_acc = test_acc
                    print(
                        "Best Eval Acc {:.4f} Test Acc {:.4f}".format(
                            best_eval_acc, best_test_acc
                        )
                    )

    dist.barrier()
    if rank == 0:
        th.save(
            {
                "epoch": counter[0],
                "model_state_dict": model.state_dict(),
                "optimizer_state_dict": optimizer.state_dict(),
                "loss": loss,
            },
            PATH,
        )
        if args.num_epochs == counter[0] + epoch + 1:
            print(
                "Avg epoch time: {}".format(avg_total.value / args.num_epochs)
            )
            print(
                "Avg epoch time after auto-tuning: {}".format(avg / (epoch + 1))
            )

    return best_test_acc


if __name__ == "__main__":
    argparser = argparse.ArgumentParser("multi-gpu training")
    argparser.add_argument(
        "--gpu",
        type=int,
        default=0,
        help="GPU device ID. Use -1 for CPU training",
    )
    argparser.add_argument("--num-epochs", type=int, default=20)
    argparser.add_argument("--num-hidden", type=int, default=256)
    argparser.add_argument("--num-layers", type=int, default=3)
    argparser.add_argument("--fan-out", type=str, default="5,10,15")
    argparser.add_argument("--batch-size", type=int, default=1000)
    argparser.add_argument("--val-batch-size", type=int, default=10000)
    argparser.add_argument("--log-every", type=int, default=20)
    argparser.add_argument("--eval-every", type=int, default=1)
    argparser.add_argument("--lr", type=float, default=0.003)
    argparser.add_argument("--dropout", type=float, default=0.5)
    argparser.add_argument(
        "--dataset",
        type=str,
        default="ogbn-products",
        choices=["ogbn-papers100M", "ogbn-products"],
    )
    argparser.add_argument(
        "--num-workers",
        type=int,
        default=4,
        help="Number of sampling processes. Use 0 for no extra process.",
    )
    argparser.add_argument("--save-pred", type=str, default="")
    argparser.add_argument("--wd", type=float, default=0)
    args = argparser.parse_args()

    device = th.device("cpu")

    # load ogbn-products data
    data = DglNodePropPredDataset(args.dataset)
    splitted_idx = data.get_idx_split()
    train_idx, val_idx, test_idx = (
        splitted_idx["train"],
        splitted_idx["valid"],
        splitted_idx["test"],
    )
    graph, labels = data[0]
    nfeat = graph.ndata.pop("feat").to(device)
    labels = labels[:, 0].to(device)

    in_feats = nfeat.shape[1]
    n_classes = (labels.max() + 1).item()
    # Create csr/coo/csc formats before launching sampling processes
    # This avoids creating certain formats in each data loader process, which saves momory and CPU.
    graph.create_formats_()
    # Pack data
    data = (
        train_idx,
        val_idx,
        test_idx,
        in_feats,
        labels,
        n_classes,
        nfeat,
        graph,
    )
    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "29501"
    mp.set_start_method("fork", force=True)
    runtime = ARGO(
        n_search=15, epoch=args.num_epochs, batch_size=args.batch_size
    )  # initialization
    runtime.run(train, args=(args, device, data))  # wrap the training function