""" This is a modified version of: https://github.com/dmlc/dgl/blob/master/examples/pytorch/ogb/ogbn-products/graphsage/main.py This example shows how to enable ARGO to automatically instantiate multi-processing and adjust CPU core assignment to achieve better performance. """ import argparse import ctypes import os import time from multiprocessing import RawValue import dgl import dgl.nn.pytorch as dglnn import numpy as np import torch as th import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import tqdm from argo import ARGO from ogb.nodeproppred import DglNodePropPredDataset from torch.nn.parallel import DistributedDataParallel avg_total = RawValue(ctypes.c_float, 0.0) class SAGE(nn.Module): def __init__( self, in_feats, n_hidden, n_classes, n_layers, activation, dropout ): super().__init__() self.n_layers = n_layers self.n_hidden = n_hidden self.n_classes = n_classes self.layers = nn.ModuleList() self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, "mean")) for i in range(1, n_layers - 1): self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, "mean")) self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, "mean")) self.dropout = nn.Dropout(dropout) self.activation = activation def forward(self, blocks, x): h = x for l, (layer, block) in enumerate(zip(self.layers, blocks)): # We need to first copy the representation of nodes on the RHS from the # appropriate nodes on the LHS. # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst # would be (num_nodes_RHS, D) h_dst = h[: block.num_dst_nodes()] # Then we compute the updated representation on the RHS. # The shape of h now becomes (num_nodes_RHS, D) h = layer(block, (h, h_dst)) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) return h def inference(self, g, x, device): """ Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling). g : the entire graph. x : the input of entire node set. The inference code is written in a fashion that it could handle any number of nodes and layers. """ # During inference with sampling, multi-layer blocks are very inefficient because # lots of computations in the first few layers are repeated. # Therefore, we compute the representation of all nodes layer by layer. The nodes # on each layer are of course splitted in batches. # TODO: can we standardize this? for l, layer in enumerate(self.layers): y = th.zeros( g.num_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes, ).to(device) sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1) dataloader = dgl.dataloading.DataLoader( g, th.arange(g.num_nodes()), sampler, batch_size=args.batch_size, shuffle=True, drop_last=False, num_workers=args.num_workers, ) for input_nodes, output_nodes, blocks in tqdm.tqdm( dataloader, disable=None ): block = blocks[0].int().to(device) h = x[input_nodes] h_dst = h[: block.num_dst_nodes()] h = layer(block, (h, h_dst)) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) y[output_nodes] = h x = y return y def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred) def evaluate(model, g, nfeat, labels, val_nid, test_nid, device): """ Evaluate the model on the validation set specified by ``val_mask``. g : The entire graph. inputs : The features of all the nodes. labels : The labels of all the nodes. val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for. device : The GPU device to evaluate on. """ model.eval() with th.no_grad(): pred = model.module.inference(g, nfeat, device) model.train() return ( compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid]), pred, ) def load_subtensor(nfeat, labels, seeds, input_nodes): """ Extracts features and labels for a set of nodes. """ batch_inputs = nfeat[input_nodes] batch_labels = labels[seeds] return batch_inputs, batch_labels #### Entry point def train( args, device, data, rank, world_size, comp_core, load_core, counter, b_size, ep, ): dist.init_process_group("gloo", rank=rank, world_size=world_size) # Unpack data train_nid, val_nid, test_nid, in_feats, labels, n_classes, nfeat, g = data # Create PyTorch DataLoader for constructing blocks sampler = dgl.dataloading.MultiLayerNeighborSampler( [int(fanout) for fanout in args.fan_out.split(",")] ) dataloader = dgl.dataloading.DataLoader( g, train_nid, sampler, batch_size=b_size, shuffle=True, drop_last=False, num_workers=len(load_core), use_ddp=True, ) # Define model and optimizer model = SAGE( in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout, ) model = model.to(device) model = DistributedDataParallel(model) loss_fcn = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) # Training loop avg = 0 iter_tput = [] best_eval_acc = 0 best_test_acc = 0 PATH = "model.pt" if counter[0] != 0: checkpoint = th.load(PATH) model.load_state_dict(checkpoint["model_state_dict"]) optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) epoch = checkpoint["epoch"] loss = checkpoint["loss"] with dataloader.enable_cpu_affinity( loader_cores=load_core, compute_cores=comp_core ): for epoch in range(ep): tic = time.time() # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. for step, (input_nodes, seeds, blocks) in enumerate(dataloader): tic_step = time.time() # copy block to gpu blocks = [blk.int().to(device) for blk in blocks] # Load the input features as well as output labels batch_inputs, batch_labels = load_subtensor( nfeat, labels, seeds, input_nodes ) # Compute loss and prediction batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, batch_labels) optimizer.zero_grad() loss.backward() optimizer.step() iter_tput.append(len(seeds) / (time.time() - tic_step)) if step % args.log_every == 0 and step != 0: acc = compute_acc(batch_pred, batch_labels) print( "Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}".format( step, loss.item(), acc.item(), np.mean(iter_tput[3:]), ) ) toc = time.time() print("Epoch Time(s): {:.4f}".format(toc - tic)) if rank == 0: global avg_total avg_total.value += toc - tic avg += toc - tic if epoch % args.eval_every == 0 and epoch != 0: eval_acc, test_acc, pred = evaluate( model, g, nfeat, labels, val_nid, test_nid, device ) if args.save_pred: np.savetxt( args.save_pred + "%02d" % epoch, pred.argmax(1).cpu().numpy(), "%d", ) print("Eval Acc {:.4f}".format(eval_acc)) if eval_acc > best_eval_acc: best_eval_acc = eval_acc best_test_acc = test_acc print( "Best Eval Acc {:.4f} Test Acc {:.4f}".format( best_eval_acc, best_test_acc ) ) dist.barrier() if rank == 0: th.save( { "epoch": counter[0], "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "loss": loss, }, PATH, ) if args.num_epochs == counter[0] + epoch + 1: print( "Avg epoch time: {}".format(avg_total.value / args.num_epochs) ) print( "Avg epoch time after auto-tuning: {}".format(avg / (epoch + 1)) ) return best_test_acc if __name__ == "__main__": argparser = argparse.ArgumentParser("multi-gpu training") argparser.add_argument( "--gpu", type=int, default=0, help="GPU device ID. Use -1 for CPU training", ) argparser.add_argument("--num-epochs", type=int, default=20) argparser.add_argument("--num-hidden", type=int, default=256) argparser.add_argument("--num-layers", type=int, default=3) argparser.add_argument("--fan-out", type=str, default="5,10,15") argparser.add_argument("--batch-size", type=int, default=1000) argparser.add_argument("--val-batch-size", type=int, default=10000) argparser.add_argument("--log-every", type=int, default=20) argparser.add_argument("--eval-every", type=int, default=1) argparser.add_argument("--lr", type=float, default=0.003) argparser.add_argument("--dropout", type=float, default=0.5) argparser.add_argument( "--dataset", type=str, default="ogbn-products", choices=["ogbn-papers100M", "ogbn-products"], ) argparser.add_argument( "--num-workers", type=int, default=4, help="Number of sampling processes. Use 0 for no extra process.", ) argparser.add_argument("--save-pred", type=str, default="") argparser.add_argument("--wd", type=float, default=0) args = argparser.parse_args() device = th.device("cpu") # load ogbn-products data data = DglNodePropPredDataset(args.dataset) splitted_idx = data.get_idx_split() train_idx, val_idx, test_idx = ( splitted_idx["train"], splitted_idx["valid"], splitted_idx["test"], ) graph, labels = data[0] nfeat = graph.ndata.pop("feat").to(device) labels = labels[:, 0].to(device) in_feats = nfeat.shape[1] n_classes = (labels.max() + 1).item() # Create csr/coo/csc formats before launching sampling processes # This avoids creating certain formats in each data loader process, which saves momory and CPU. graph.create_formats_() # Pack data data = ( train_idx, val_idx, test_idx, in_feats, labels, n_classes, nfeat, graph, ) os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "29501" mp.set_start_method("fork", force=True) runtime = ARGO( n_search=15, epoch=args.num_epochs, batch_size=args.batch_size ) # initialization runtime.run(train, args=(args, device, data)) # wrap the training function