node_classification.py 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
"""
import argparse
41
import time
42
43
44
45
46
47
48

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
49
from tqdm import tqdm
50
51


52
53
54
def create_dataloader(
    graph, features, itemset, batch_size, fanout, device, num_workers, job
):
55
56
57
58
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
59
60
    GraphBolt. For a more detailed tutorial, please read the examples in
    `dgl/notebooks/graphbolt/walkthrough.ipynb`.
61
    Alternatively, you can create a datapipe using its class constructor.
62
63
64

    Parameters
    ----------
65
    job : one of ["train", "evaluate", "infer"]
66
67
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
68
    Other parameters are explicated in the comments below.
69
70
71
72
73
74
75
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
76
    # 'batch_size': Specify the number of samples to be processed together,
77
78
79
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
80
    # 'job': Determines whether data should be shuffled. (Shuffling is
81
82
83
84
85
86
87
88
89
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
90
        itemset, batch_size=batch_size, shuffle=(job == "train")
91
92
93
94
95
96
97
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
98
99
    # '[-1] or fanout': Number of neighbors to sample per node. In
    # training or validation, the length of `fanout` should be equal to the
100
101
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
102
103
104
105
106
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
107
    datapipe = datapipe.sample_neighbor(
108
        graph, fanout if job != "infer" else [-1]
109
    )
110
111
112
113
114
115
116
117
118
119
120

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
121
122
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
123
    ############################################################################
124
125
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
126
127
128

    ############################################################################
    # [Step-4]:
129
130
131
132
133
134
135
136
137
138
139
140
    # self.to_dgl()
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
    datapipe = datapipe.to_dgl()

    ############################################################################
    # [Step-5]:
141
142
143
144
145
146
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
147
    datapipe = datapipe.copy_to(device=device)
148
149
150

    ############################################################################
    # [Step-6]:
151
    # gb.DataLoader()
152
153
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
154
    # 'num_workers': The number of processes to be used for data loading.
155
    # [Output]:
156
    # A DataLoader object to handle data loading.
157
158
159
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
160
    dataloader = gb.DataLoader(datapipe, num_workers=num_workers)
161
162
163
164
165

    # Return the fully-initialized DataLoader object.
    return dataloader


166
167
168
169
170
171
172
173
174
175
176
177
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
178
        self.set_layer_dtype(torch.float32)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

195
    def inference(self, graph, features, dataloader, device):
196
197
198
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

199
200
201
202
203
        buffer_device = torch.device("cpu")
        # Enable pin_memory for faster CPU to GPU data transfer if the
        # model is running on a GPU.
        pin_memory = buffer_device != device

204
205
206
207
208
209
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
210
                dtype=torch.float32,
211
212
                device=buffer_device,
                pin_memory=pin_memory,
213
            )
214
            feature = feature.to(device)
215

216
            for step, data in tqdm(enumerate(dataloader)):
217
                x = feature[data.input_nodes]
218
                hidden_x = layer(data.blocks[0], x)  # len(blocks) = 1
219
220
221
222
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
223
224
225
                y[
                    data.output_nodes[0] : data.output_nodes[-1] + 1
                ] = hidden_x.to(buffer_device)
226
227
228
229
230
231
232
233
234
235
236
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
237
238
239
240
241
242
243
244
        graph=graph,
        features=features,
        itemset=all_nodes_set,
        batch_size=4 * args.batch_size,
        fanout=[-1],
        device=args.device,
        num_workers=args.num_workers,
        job="infer",
245
    )
246
    pred = model.inference(graph, features, dataloader, args.device)
247
248
249
250
251
252
253
254
255
256
257
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


258
259
260
261
262
263
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
264
265
266
267
268
269
270
271
        graph=graph,
        features=features,
        itemset=itemset,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="evaluate",
272
273
    )

274
    for step, data in tqdm(enumerate(dataloader)):
275
276
        x = data.node_features["feat"]
        y.append(data.labels)
277
        y_hats.append(model(data.blocks, x))
278

279
    return MF.accuracy(
280
281
282
283
284
285
286
287
288
289
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
290
291
292
293
294
295
296
297
        graph=graph,
        features=features,
        itemset=train_set,
        batch_size=args.batch_size,
        fanout=args.fanout,
        device=args.device,
        num_workers=args.num_workers,
        job="train",
298
299
    )

300
    for epoch in range(args.epochs):
301
        t0 = time.time()
302
303
        model.train()
        total_loss = 0
304
        for step, data in enumerate(dataloader):
305
306
307
308
309
310
311
312
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

313
            y_hat = model(data.blocks, x)
314
315
316
317
318
319
320
321
322
323

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

324
        t1 = time.time()
325
326
327
328
        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
329
            f"Accuracy {acc.item():.4f} | Time {t1 - t0:.4f}"
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
348
        "--batch-size", type=int, default=1024, help="Batch size for training."
349
350
351
352
    )
    parser.add_argument(
        "--num-workers",
        type=int,
353
        default=0,
354
355
356
357
358
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
359
        default="10,10,10",
360
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
361
        " identical with the number of layers in your model. Default: 10,10,10",
362
    )
363
364
365
366
367
368
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
369
370
371
372
    return parser.parse_args()


def main(args):
373
374
375
376
377
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")
    args.device = torch.device(args.device)

378
    # Load and preprocess dataset.
379
    print("Loading data...")
380
381
382
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
383
384
    # Currently the neighbor-sampling process can only be done on the CPU,
    # therefore there is no need to copy the graph to the GPU.
385
386
387
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
388
389
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
390
391
392
393
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

394
    in_size = features.size("node", None, "feat")[0]
395
    hidden_size = 256
396
397
398
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
399
400
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
401
402
403
404
405
406
407

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
408
409
410
411
412
413
414
415
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
416
    )
417
    print(f"Test accuracy {test_acc.item():.4f}")
418
419
420
421
422


if __name__ == "__main__":
    args = parse_args()
    main(args)