test_transform.py 65 KB
Newer Older
1
from scipy import sparse as spsp
2
3
import networkx as nx
import numpy as np
4
import os
5
6
import dgl
import dgl.function as fn
7
import dgl.partition
8
import backend as F
9
from dgl.graph_index import from_scipy_sparse_matrix
10
import unittest
11
from utils import parametrize_dtype
12

13
from test_heterograph import create_test_heterograph3, create_test_heterograph4, create_test_heterograph5
14

15
16
17
D = 5

# line graph related
18

19
def test_line_graph1():
20
    N = 5
21
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
22
    G.edata['h'] = F.randn((2 * N, D))
23
24
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
25
    assert F.allclose(L.ndata['h'], G.edata['h'])
26
    assert G.device == F.ctx()
27

28
@parametrize_dtype
29
def test_line_graph2(idtype):
30
31
32
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype)
33
    lg = dgl.line_graph(g)
34
35
36
37
38
39
40
41
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

42
    lg = dgl.line_graph(g, backtracking=False)
43
44
45
46
47
48
49
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
50
51
52
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csr')
53
    lg = dgl.line_graph(g)
54
55
56
57
58
59
60
61
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

62
63
64
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2],[2, 0, 2, 0, 1])
    }, idtype=idtype).formats('csc')
65
    lg = dgl.line_graph(g)
66
67
68
69
70
71
72
73
74
75
76
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
77

78
79
80
81
82
83
84
85
86
87
88
89
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
90
91
@parametrize_dtype
def test_reverse(idtype):
92
    g = dgl.DGLGraph()
93
    g = g.astype(idtype).to(F.ctx())
94
95
96
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
97
98
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
99
100
101
102
103
104
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
105
106
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
107
108
109
110
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

111
    # test dgl.reverse
112
113
114
115
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
116
    g_r = dgl.reverse(g)
117
118
119
120
121
122
123
124
125
126
127
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
128
    g_r = dgl.reverse(g, copy_ndata=False)
129
130
131
132
133
134
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
135
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
155
156
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
157
158
159
160
161
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
162
    g_r = dgl.reverse(g)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
192
    g_r = dgl.reverse(g, copy_ndata=False)
193
194
195
196
197
198
199
200
201
202
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

203
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

223

224
225
@parametrize_dtype
def test_reverse_shared_frames(idtype):
226
    g = dgl.DGLGraph()
227
    g = g.astype(idtype).to(F.ctx())
228
229
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
230
231
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
232
233

    rg = g.reverse(share_ndata=True, share_edata=True)
234
235
236
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
237
238
                      rg.edges[[1, 1], [0, 2]].data['h'])

239
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
240
def test_to_bidirected():
241
242
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
243
             (1, 1), (2, 1), (2, 2)]
244
    num_edges = 7
245
    g = dgl.graph(tuple(zip(*elist)))
246
247
248
249
250
251
252
253
254
255
256
257
258
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
259
260
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

def test_add_reverse_edges():
281
282
283
284
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
285
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
286
287
288
289
290
291
292
293
294
295
296
297
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
298
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
299
300
301
302
303
304
305
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
306
    g = dgl.graph(([], []))
307
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
308
309
310
311
312
313
314
315
316
317

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
318
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
335
336
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
337
338

    # donot share ndata and edata
339
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])

388

389
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
390
391
392
393
394
395
396
397
398
399
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
400

401
402
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
403
    def _test(in_readonly, out_readonly):
404
405
406
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
407
408
409
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
410
        big = dgl.to_bidirected_stale(g, out_readonly)
411
        assert big.number_of_edges() == num_edges
412
413
414
415
416
417
418
419
420
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

421

422
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
423
424
425
426
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
447

448
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
449
450
451
452
453
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
454
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
455
456
457
458
459
460
461
462
463
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

464

465
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
466
467
468
469
470
471
472
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
473
    # test batched DGLGraph
474
    '''
475
476
477
478
479
480
481
482
483
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
484
    '''
485

486
def create_large_graph(num_nodes):
487
488
489
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
490
    spm.sum_duplicates()
491

492
    return dgl.from_scipy(spm)
493
494
495
496
497
498
499
500
501

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

502
# Disabled since everything will be on heterogeneous graphs
503
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
504
def test_partition_with_halo():
505
    g = create_large_graph(1000)
506
    node_part = np.random.choice(4, g.number_of_nodes())
507
    subgs, _, _ = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
508
509
510
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
511
512
513
514
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(g.out_degrees(orig_nids)))
515

516
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
517
518
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
Da Zheng's avatar
Da Zheng committed
519
    # TODO(zhengda) Metis fails to partition a small graph.
520
    g = create_large_graph(1000)
521
522
523
524
525
526
    check_metis_partition(g, 0)
    check_metis_partition(g, 1)
    check_metis_partition(g, 2)
    check_metis_partition_with_constraint(g)


527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
550
551
552

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
553
554
555
556
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
557
558
559
560
561
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
562
563
564
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
565
566
567
    if extra_hops == 0:
        return

568
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
569
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
570
571
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
572
    edge_cnts = np.zeros((g.number_of_edges(),))
573
574
575
576
577
578
579
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

604
605
606
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
607
608
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
609
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
610
611
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
612
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
613
614
615
616
617
618
619
620
621
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
622
623
624
625
626
627
628
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
629
630
631
632
633
634
635
636
637
638
639
640
641
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

642
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
643
@parametrize_dtype
644
def test_compact(idtype):
645
    g1 = dgl.heterograph({
646
647
648
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
649
        {'user': 20, 'game': 10}, idtype=idtype)
650
651

    g2 = dgl.heterograph({
652
653
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
654
        {'user': 20, 'game': 10}, idtype=idtype)
655

656
657
658
659
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
                         {'user': 10}, idtype=idtype)
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
                         {'user': 10}, idtype=idtype)
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
682
    assert new_g1.idtype == idtype
683
684
685
686
687
688
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
689
690
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
691
692
693
694
695
696
697
698
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
699
        g3, always_preserve=F.tensor([1, 7], idtype))
700
701
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
702

703
    assert new_g3.idtype == idtype
704
705
706
707
708
709
710
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
711
712
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
713
714
715
716
717
718
719
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
720
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
721
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
722
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
723
724
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
725
726
727
728
729
730
731
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
732
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
733
734
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
735

736
737
738
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

739
740
741
742
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

743
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
744
@parametrize_dtype
745
def test_to_simple(idtype):
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

778
779
780
781
782
783
784
785
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

786
    # heterogeneous graph
787
    g = dgl.heterograph({
788
789
790
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
791
        idtype=idtype, device=F.ctx())
792
793
794
795
796
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
797
798
799
800
801
802

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
803
        eid_map = F.asnumpy(wb[etype])
804
805
806
807
808
809
810
811
812
813
814
815

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
834

835
@parametrize_dtype
836
def test_to_block(idtype):
837
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
838
839
840
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
841
842
843
844
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
845
846
847
848
849
850

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
851

852
853
854
855
856
857
858
859
860
861
862
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

863
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
864
865
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
866
            if dst_nodes is not None and ntype in dst_nodes:
867
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
868
            else:
869
                check(g, bg, ntype, etype, None, include_dst_in_src)
870
871

    g = dgl.heterograph({
872
873
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
874
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
875
876
877
878
879
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
880
881
    g_a = g['AA']

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.srcnodes[ntype].data[dgl.NID]))
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(g.nodes[ntype].data[key], bg.dstnodes[ntype].data[dgl.NID]))
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]))

899
900
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
901
    check_features(g_a, bg)
902
903
904
905
906
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
907
    check_features(g_a, bg)
908
909
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
910

911
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
912
913
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
914
    check_features(g_a, bg)
915
916
917
918

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
919
    assert bg.idtype == idtype
920
921
922
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
923
    checkall(g_ab, bg, None)
924
    check_features(g_ab, bg)
925

926
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
927
    bg = dgl.to_block(g, dst_nodes)
928
    assert bg.number_of_nodes('SRC/B') == 4
929
930
931
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
932
    check_features(g, bg)
933

934
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype), 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
935
936
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
937
    check_features(g, bg)
938
939

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
940
@parametrize_dtype
941
def test_remove_edges(idtype):
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
960
        assert g1.idtype == g.idtype
961
962
963

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
964
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(fmt)
965
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
966
967
            check(g1, None, g, edges_to_remove)

968
            g = dgl.from_scipy(
969
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
970
971
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
972
973
974
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
975
976
977
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
978
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
979
980
981
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
982

983
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype), 'AB': F.tensor([3], idtype), 'BA': F.tensor([1], idtype)})
984
985
986
987
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

988
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
989
    check(g4, 'AA', g, [])
990
    check(g4, 'AB', g, [3, 1, 2, 0])
991
992
    check(g4, 'BA', g, [])

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1017
1018
1019
1020
1021
1022
1023
1024
1025
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1058
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1073
1074
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1101
1102
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1115
1116
1117
1118
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1137
    g = create_test_heterograph3(idtype)
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1182
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1183
1184
1185
1186
1187
1188
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1189
1190
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1191
1192
1193
1194
1195
1196
1197
1198
1199
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1200
    g = create_test_heterograph3(idtype)
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
    g = dgl.add_nodes(g, 1, ntype='user')
    g = dgl.add_nodes(g, 2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1253
1254
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1255
1256
1257
1258
1259
1260
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1261
1262
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1274
1275
1276
1277
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
1278
1279
1280
1281
1282
1283
1284
1285
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1286
    g = create_test_heterograph3(idtype)
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1348
1349
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1350
1351
1352
1353
1354
1355
1356
1357
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1358
1359
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1360
1361
1362
1363
1364
1365
1366
1367
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1368
1369
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
1380
    g = create_test_heterograph3(idtype)
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

@parametrize_dtype
def test_add_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1, 2, 3, 0, 0, 0], dtype=idtype))

    # bipartite graph
1414
1415
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1416
1417
1418
1419
1420
1421
1422
1423
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1424
    g = create_test_heterograph5(idtype)
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([1, 2, 0, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

@parametrize_dtype
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1454
1455
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype, device=F.ctx())
1456
1457
1458
1459
1460
1461
1462
1463
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1464
    g = create_test_heterograph4(idtype)
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h'], F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 2], dtype=idtype))

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
1482

1483
1484

@parametrize_dtype
1485
def test_reorder_graph(idtype):
1486
1487
1488
1489
1490
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
    # call with default args: node_permute_algo='rcmk', edge_permute_algo='src', store_ids=True
    rg = dgl.reorder_graph(g)
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
1510
1511

    # reorder back to original according to stored ids
1512
1513
1514
    rg = dgl.reorder_graph(g)
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
1515
1516
1517
1518
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
1519
    rg = dgl.reorder_graph(g, store_ids=False)
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
1533
            dgl.reorder_graph(mg, node_permute_algo='metis')
1534
1535
1536
1537
1538
1539
1540
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
1541
1542
            dgl.reorder_graph(mg,
                              node_permute_algo='metis', permute_config={'k': 2})
1543
1544
1545
1546
1547
1548
1549
1550
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
1551
1552
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
1553
1554
1555
1556
1557
1558
1559
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
1560
1561
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm':  nodes_perm[:g.num_nodes() - 1]})
1562
1563
1564
1565
1566
1567
1568
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
1569
        dgl.reorder_graph(g, node_permute_algo='cmk')
1570
1571
1572
1573
1574
1575
1576
1577
1578
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1579
        dgl.reorder_graph(hg)
1580
1581
1582
1583
1584
1585
1586
    except:
        raise_error = True
    assert raise_error

    # add 'csr' format if needed
    fg = g.formats('csc')
    assert 'csr' not in sum(fg.formats().values(), [])
1587
    rfg = dgl.reorder_graph(fg)
1588
1589
    assert 'csr' in sum(rfg.formats().values(), [])

1590
if __name__ == '__main__':
1591
    test_partition_with_halo()