csc_sampling_graph.cc 40.4 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
21
#include "./shared_memory_utils.h"

22
23
24
25
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
26
    const torch::Tensor& indptr, const torch::Tensor& indices,
27
    const torch::optional<torch::Tensor>& node_type_offset,
28
29
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
30
    : indptr_(indptr),
31
      indices_(indices),
32
      node_type_offset_(node_type_offset),
33
34
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
35
36
37
38
39
40
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
41
    const torch::Tensor& indptr, const torch::Tensor& indices,
42
    const torch::optional<torch::Tensor>& node_type_offset,
43
44
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
45
46
47
48
49
50
51
52
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
53
54
55
56
57
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
58
  return c10::make_intrusive<CSCSamplingGraph>(
59
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
60
61
}

62
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
63
64
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
65
66
67
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
68
69
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
70
71
72
73
74
75
76
77
78
79
80
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
81
82
83
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
84
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
85
86
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
87
88
89
90
91
92
93
94
95
96
97
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
98
99
}

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
130
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
131
132
133
134
135
136
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
193
194
195
196
197
 * @return A lambda function: (int64_t offset, int64_t num_neighbors,
 * PickedType* picked_data_ptr) -> torch::Tensor, which takes offset (the
 * starting edge ID of the given node) and num_neighbors (number of neighbors)
 * as params and puts the picked neighbors at the address specified by
 * picked_data_ptr.
198
 */
199
template <SamplerType S>
200
201
202
203
204
205
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
206
207
208
209
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
210
211
212
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
213
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
214
215
216
    } else {
      return Pick(
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
217
          args, picked_data_ptr);
218
219
220
221
    }
  };
}

222
template <typename NumPickFn, typename PickFn>
223
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
224
225
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
226
  const int64_t num_nodes = nodes.size(0);
227
  const auto indptr_options = indptr_.options();
228
  torch::Tensor num_picked_neighbors_per_node =
229
      torch::empty({num_nodes + 1}, indptr_options);
230

231
232
233
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
234
235
236
237
238
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

239
  AT_DISPATCH_INTEGRAL_TYPES(
240
241
242
243
244
245
246
247
      indptr_.scalar_type(), "SampleNeighborsImpl", ([&] {
        const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
        auto num_picked_neighbors_data_ptr =
            num_picked_neighbors_per_node.data_ptr<scalar_t>();
        num_picked_neighbors_data_ptr[0] = 0;
        const auto nodes_data_ptr = nodes.data_ptr<int64_t>();

        // Step 1. Calculate pick number of each node.
248
        torch::parallel_for(
249
250
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
251
                const auto nid = nodes_data_ptr[i];
252
253
254
255
256
257
258
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                num_picked_neighbors_data_ptr[i + 1] =
                    num_neighbors == 0 ? 0 : num_pick_fn(offset, num_neighbors);
              }
            });

        // Step 2. Calculate prefix sum to get total length and offsets of each
        // node. It's also the indptr of the generated subgraph.
        subgraph_indptr = torch::cumsum(num_picked_neighbors_per_node, 0);

        // Step 3. Allocate the tensor for picked neighbors.
        const auto total_length =
            subgraph_indptr.data_ptr<scalar_t>()[num_nodes];
        picked_eids = torch::empty({total_length}, indptr_options);
        subgraph_indices = torch::empty({total_length}, indices_.options());
        if (type_per_edge_.has_value()) {
          subgraph_type_per_edge =
              torch::empty({total_length}, type_per_edge_.value().options());
        }
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        // Step 4. Pick neighbors for each node.
        auto picked_eids_data_ptr = picked_eids.data_ptr<scalar_t>();
        auto subgraph_indptr_data_ptr = subgraph_indptr.data_ptr<scalar_t>();
        torch::parallel_for(
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
                const auto nid = nodes_data_ptr[i];
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;
                const auto picked_number = num_picked_neighbors_data_ptr[i + 1];
                const auto picked_offset = subgraph_indptr_data_ptr[i];
                if (picked_number > 0) {
                  auto actual_picked_count = pick_fn(
                      offset, num_neighbors,
                      picked_eids_data_ptr + picked_offset);
                  TORCH_CHECK(
                      actual_picked_count == picked_number,
                      "Actual picked count doesn't match the calculated pick "
                      "number.");

                  // Step 5. Calculate other attributes and return the subgraph.
                  AT_DISPATCH_INTEGRAL_TYPES(
                      subgraph_indices.scalar_type(),
                      "IndexSelectSubgraphIndices", ([&] {
                        auto subgraph_indices_data_ptr =
                            subgraph_indices.data_ptr<scalar_t>();
                        auto indices_data_ptr = indices_.data_ptr<scalar_t>();
                        for (auto i = picked_offset;
                             i < picked_offset + picked_number; ++i) {
                          subgraph_indices_data_ptr[i] =
                              indices_data_ptr[picked_eids_data_ptr[i]];
                        }
                      }));
                  if (type_per_edge_.has_value()) {
                    AT_DISPATCH_INTEGRAL_TYPES(
                        subgraph_type_per_edge.value().scalar_type(),
                        "IndexSelectTypePerEdge", ([&] {
                          auto subgraph_type_per_edge_data_ptr =
                              subgraph_type_per_edge.value()
                                  .data_ptr<scalar_t>();
                          auto type_per_edge_data_ptr =
                              type_per_edge_.value().data_ptr<scalar_t>();
                          for (auto i = picked_offset;
                               i < picked_offset + picked_number; ++i) {
                            subgraph_type_per_edge_data_ptr[i] =
                                type_per_edge_data_ptr[picked_eids_data_ptr[i]];
                          }
                        }));
                  }
                }
328
              }
329
            });
330
      }));
331

332
333
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
334

335
  return c10::make_intrusive<SampledSubgraph>(
336
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
337
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
338
339
}

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
355

356
357
358
359
360
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
361
        nodes, return_eids,
362
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
363
364
365
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
366
367
368
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
369
        nodes, return_eids,
370
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
371
372
373
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
374
375
376
  }
}

377
378
379
380
381
382
383
384
385
386
387
388
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

389
390
391
392
393
394
395
396
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
397
      optional_tensors[2], optional_tensors[3], torch::nullopt);
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

419
420
421
422
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
423
424
425
426
427
428
429
430
431
432
433
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

468
469
470
471
472
473
474
475
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
476
477
478
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
479
480
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
481
 * @param replace Boolean indicating whether the sample is performed with or
482
483
484
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
485
486
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
487
 */
488
template <typename PickedType>
489
inline int64_t UniformPick(
490
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
491
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
492
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
493
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
494
    return num_neighbors;
495
  } else if (replace) {
496
497
498
499
500
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
501
    return fanout;
502
  } else {
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
537
      return fanout;
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
558
      return fanout;
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
582
      return picked_set.size();
583
    }
584
585
586
  }
}

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
605
606
607
608
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
609
610
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
611
 * @param replace Boolean indicating whether the sample is performed with or
612
613
614
615
616
617
618
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
619
620
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
621
 */
622
template <typename PickedType>
623
inline int64_t NonUniformPick(
624
625
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
626
627
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
628
629
630
631
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
632
  if (num_positive_probs == 0) return 0;
633
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
634
635
636
637
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
638
    return num_positive_probs;
639
640
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
641
642
643
644
645
    std::memcpy(
        picked_data_ptr,
        (torch::multinomial(local_probs, fanout, replace) + offset)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
646
    return fanout;
647
648
649
  }
}

650
template <typename PickedType>
651
int64_t Pick(
652
653
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
654
    const torch::optional<torch::Tensor>& probs_or_mask,
655
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
656
  if (probs_or_mask.has_value()) {
657
    return NonUniformPick(
658
659
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
660
  } else {
661
    return UniformPick(
662
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
663
664
665
  }
}

666
template <SamplerType S, typename PickedType>
667
int64_t PickByEtype(
668
669
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
670
    const torch::Tensor& type_per_edge,
671
672
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
673
674
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
675
  int64_t pick_offset = 0;
676
677
678
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
679
680
681
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
682
          TORCH_CHECK(
683
              etype >= 0 && etype < (int64_t)fanouts.size(),
684
              "Etype values exceed the number of fanouts.");
685
          int64_t fanout = fanouts[etype];
686
687
688
689
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
690
691
          // Do sampling for one etype.
          if (fanout != 0) {
692
            int64_t picked_count = Pick(
693
                etype_begin, etype_end - etype_begin, fanout, replace, options,
694
695
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
696
697
698
699
          }
          etype_begin = etype_end;
        }
      }));
700
  return pick_offset;
701
702
}

703
template <typename PickedType>
704
int64_t Pick(
705
706
707
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
708
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
709
  if (fanout == 0) return 0;
710
  if (probs_or_mask.has_value()) {
711
    if (fanout < 0) {
712
      return NonUniformPick(
713
714
715
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
716
      int64_t picked_count;
717
718
719
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
720
              picked_count = LaborPick<true, true, scalar_t>(
721
722
723
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
724
              picked_count = LaborPick<true, false, scalar_t>(
725
726
727
728
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
729
      return picked_count;
730
731
    }
  } else if (fanout < 0) {
732
    return UniformPick(
733
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
734
  } else if (replace) {
735
    return LaborPick<false, true, float>(
736
        offset, num_neighbors, fanout, options,
737
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
738
  } else {  // replace = false
739
    return LaborPick<false, false, float>(
740
        offset, num_neighbors, fanout, options,
741
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
759
760
761
762
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
763
764
765
766
767
768
769
770
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
771
772
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
773
 */
774
template <
775
776
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
777
inline int64_t LaborPick(
778
779
780
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
781
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
782
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
783
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
784
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
785
    return num_neighbors;
786
787
  }
  // Assuming max_degree of a vertex is <= 4 billion.
788
789
790
791
792
793
794
795
796
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
797
798
799
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
826
827
828
829
830
831
832
833
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
834
835
836
837
838
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
839
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
840
841
842
843
844
845
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
846
847
848
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
849
850
851
852
853
854
855
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
856
                  remaining_data[i] = -1;
857
858
859
860
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
861
            const auto t = local_indices_data[i];
862
863
864
865
866
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
867
            if (remaining_data[i] == -1) continue;
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
919
920
921
922
923
924
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
925
  return num_sampled;
926
927
}

928
929
}  // namespace sampling
}  // namespace graphbolt