test_transform.py 42.4 KB
Newer Older
1
from scipy import sparse as spsp
2
import unittest
3
4
5
6
import networkx as nx
import numpy as np
import dgl
import dgl.function as fn
7
import backend as F
8
from dgl.graph_index import from_scipy_sparse_matrix
9
import unittest
10
from utils import parametrize_dtype
11
12
13
14

D = 5

# line graph related
15

16
17
18
def test_line_graph():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
19
    G.edata['h'] = F.randn((2 * N, D))
20
21
22
    n_edges = G.number_of_edges()
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
23
    L.ndata['h'] = F.randn((2 * N, D))
24
25
26
27
28
    # update node features on line graph should reflect to edge features on
    # original graph.
    u = [0, 0, 2, 3]
    v = [1, 2, 0, 0]
    eid = G.edge_ids(u, v)
29
30
    L.nodes[eid].data['h'] = F.zeros((4, D))
    assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D)))
31
32
33

    # adding a new node feature on line graph should also reflect to a new
    # edge feature on original graph
34
    data = F.randn((n_edges, D))
35
    L.ndata['w'] = data
36
    assert F.allclose(G.edata['w'], data)
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@parametrize_dtype
def test_hetero_linegraph(index_dtype):
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
        'user', 'follows', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

    lg = dgl.line_heterograph(g, backtracking=False)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
59
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
60
61
62
63
64
65
66
67
68
69
        'user', 'follows', restrict_format='csr', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

70
    g = dgl.graph(([0, 1, 1, 2, 2],[2, 0, 2, 0, 1]),
71
72
73
74
75
76
77
78
79
80
81
82
83
        'user', 'follows', restrict_format='csc', index_dtype=index_dtype)
    lg = dgl.line_heterograph(g)
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
        e1 = G.edge_id(0, i)
        e2 = G.edge_id(i, 0)
        assert not L.has_edge_between(e1, e2)
        assert not L.has_edge_between(e2, e1)

# reverse graph related
def test_reverse():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
102
103
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
104
105
106
107
108
109
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
110
111
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
112
113
114
115
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    # test dgl.reverse_heterograph
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
    g_r = dgl.reverse_heterograph(g)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])})
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    g_r = dgl.reverse_heterograph(g)

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

227

228
229
230
231
def test_reverse_shared_frames():
    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
232
233
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
234
235

    rg = g.reverse(share_ndata=True, share_edata=True)
236
237
238
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
239
240
241
                      rg.edges[[1, 1], [0, 2]].data['h'])

    rg.ndata['h'] = rg.ndata['h'] + 1
242
    assert F.allclose(rg.ndata['h'], g.ndata['h'])
243
244

    g.edata['h'] = g.edata['h'] - 1
245
    assert F.allclose(rg.edata['h'], g.edata['h'])
246
247
248
249
250

    src_msg = fn.copy_src(src='h', out='m')
    sum_reduce = fn.sum(msg='m', out='h')

    rg.update_all(src_msg, sum_reduce)
251
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def test_to_bidirected():
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True)
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
    bg = dgl.to_bidirected(g, copy_ndata=False, copy_edata=False)
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
    g = dgl.graph([])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True)

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0

    # donot share ndata and edata
    bg = dgl.to_bidirected(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

331

332
333
334
335
336
337
338
339
340
341
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
342

343

344
345
def test_bidirected_graph():
    def _test(in_readonly, out_readonly):
346
347
348
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
349
350
351
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
352
        big = dgl.to_bidirected_stale(g, out_readonly)
353
        assert big.number_of_edges() == num_edges
354
355
356
357
358
359
360
361
362
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

363

364
365
366
367
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
        adj = F.tensor(dgl.khop_adj(g, k))
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

404

405
406
407
408
409
410
411
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
412
    # test batched DGLGraph
413
414
415
416
417
418
419
420
421
422
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps

423

VoVAllen's avatar
VoVAllen committed
424
def test_add_self_loop():
425
426
427
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
VoVAllen's avatar
VoVAllen committed
428
429
    # Nodes 0, 3, 4 don't have self-loop
    new_g = dgl.transform.add_self_loop(g)
430
431
432
433
434
435
436
437
438
439
440
441
    assert F.allclose(new_g.edges()[0], F.tensor([0, 0, 1, 2, 3, 4]))
    assert F.allclose(new_g.edges()[1], F.tensor([1, 0, 1, 2, 3, 4]))


def test_remove_self_loop():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2], [1, 1, 2])
    new_g = dgl.transform.remove_self_loop(g)
    assert F.allclose(new_g.edges()[0], F.tensor([0]))
    assert F.allclose(new_g.edges()[1], F.tensor([1]))

442
443
444
445
def create_large_graph_index(num_nodes):
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
446
447

    return from_scipy_sparse_matrix(spm, True)
448
449
450
451
452
453
454
455
456

def get_nodeflow(g, node_ids, num_layers):
    batch_size = len(node_ids)
    expand_factor = g.number_of_nodes()
    sampler = dgl.contrib.sampling.NeighborSampler(g, batch_size,
            expand_factor=expand_factor, num_hops=num_layers,
            seed_nodes=node_ids)
    return next(iter(sampler))

457
def test_partition_with_halo():
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    node_part = np.random.choice(4, g.number_of_nodes())
    subgs = dgl.transform.partition_graph_with_halo(g, node_part, 2)
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
        nf = get_nodeflow(g, node_ids, 2)
        lnf = get_nodeflow(subg, lnode_ids, 2)
        for i in range(nf.num_layers):
            layer_nids1 = F.asnumpy(nf.layer_parent_nid(i))
            layer_nids2 = lnf.layer_parent_nid(i)
            layer_nids2 = F.asnumpy(F.gather_row(subg.parent_nid, layer_nids2))
            assert np.all(np.sort(layer_nids1) == np.sort(layer_nids2))

        for i in range(nf.num_blocks):
            block_eids1 = F.asnumpy(nf.block_parent_eid(i))
            block_eids2 = lnf.block_parent_eid(i)
            block_eids2 = F.asnumpy(F.gather_row(subg.parent_eid, block_eids2))
            assert np.all(np.sort(block_eids1) == np.sort(block_eids2))
477

478
479
480
481
482
483
    subgs = dgl.transform.partition_graph_with_halo(g, node_part, 2, reshuffle=True)
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
        assert np.all(np.sort(F.asnumpy(subg.ndata['orig_id'])[lnode_ids]) == node_ids)

484
485
@unittest.skipIf(F._default_context_str == 'gpu', reason="METIS doesn't support GPU")
def test_metis_partition():
Da Zheng's avatar
Da Zheng committed
486
    # TODO(zhengda) Metis fails to partition a small graph.
487
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
Da Zheng's avatar
Da Zheng committed
488
489
490
    check_metis_partition(g, 0)
    check_metis_partition(g, 1)
    check_metis_partition(g, 2)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    check_metis_partition_with_constraint(g)

def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
    ntypes[0:int(g.number_of_nodes()/4)] = 1
    ntypes[int(g.number_of_nodes()*3/4):] = 2
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1, balance_ntypes=ntypes)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=1,
                                          balance_ntypes=ntypes, balance_edges=True)
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
516
517
518

def check_metis_partition(g, extra_hops):
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops)
519
520
521
522
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
523
524
525
526
527
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
528
529
530
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
531
532
533
    if extra_hops == 0:
        return

534
    # partitions with node reshuffling
Da Zheng's avatar
Da Zheng committed
535
    subgs = dgl.transform.metis_partition(g, 4, extra_cached_hops=extra_hops, reshuffle=True)
536
537
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
538
    edge_cnts = np.zeros((g.number_of_edges(),))
539
540
541
542
543
544
545
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(lnode_ids)
Da Zheng's avatar
Da Zheng committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
            assert np.all(parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(F.asnumpy(old_neighs2)))
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

570
571
572
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
@unittest.skipIf(F._default_context_str == 'gpu', reason="It doesn't support GPU")
def test_reorder_nodes():
    g = dgl.DGLGraph(create_large_graph_index(1000), readonly=True)
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
    new_g = dgl.transform.reorder_nodes(g, new_nids)
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
588
589
590
591
592
593
594
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
595
596
597
598
599
600
601
602
603
604
605
606
607
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

608
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
609
610
611
612
613
614
@parametrize_dtype
def test_in_subgraph(index_dtype):
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow', index_dtype=index_dtype)
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', index_dtype=index_dtype)
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', index_dtype=index_dtype)
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', index_dtype=index_dtype)
615
616
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
617
    assert subg._idtype_str == index_dtype
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
635
636
637
638
639
640
@parametrize_dtype
def test_out_subgraph(index_dtype):
    g1 = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow', index_dtype=index_dtype)
    g2 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', index_dtype=index_dtype)
    g3 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', index_dtype=index_dtype)
    g4 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', index_dtype=index_dtype)
641
642
    hg = dgl.hetero_from_relations([g1, g2, g3, g4])
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
643
    assert subg._idtype_str == index_dtype
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
662

663
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
664
665
@parametrize_dtype
def test_compact(index_dtype):
666
667
668
669
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(1, 3), (3, 5)],
        ('user', 'plays', 'game'): [(2, 4), (3, 4), (2, 5)],
        ('game', 'wished-by', 'user'): [(6, 7), (5, 7)]},
670
        {'user': 20, 'game': 10}, index_dtype=index_dtype)
671
672
673
674

    g2 = dgl.heterograph({
        ('game', 'clicked-by', 'user'): [(3, 1)],
        ('user', 'likes', 'user'): [(1, 8), (8, 9)]},
675
        {'user': 20, 'game': 10}, index_dtype=index_dtype)
676

677
678
    g3 = dgl.graph([(0, 1), (1, 2)], num_nodes=10, ntype='user', index_dtype=index_dtype)
    g4 = dgl.graph([(1, 3), (3, 5)], num_nodes=10, ntype='user', index_dtype=index_dtype)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
701
    assert new_g1._idtype_str == index_dtype
702
703
704
705
706
707
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
708
709
        g1, always_preserve={'game': F.tensor([4, 7], dtype=getattr(F, index_dtype))})
    assert new_g1._idtype_str == index_dtype
710
711
712
713
714
715
716
717
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
718
        g3, always_preserve=F.tensor([1, 7], dtype=getattr(F, index_dtype)))
719
720
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
721

722
    assert new_g3._idtype_str == index_dtype
723
724
725
726
727
728
729
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
730
731
    assert new_g1._idtype_str == index_dtype
    assert new_g2._idtype_str == index_dtype
732
733
734
735
736
737
738
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
739
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=getattr(F, index_dtype))})
740
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes}
741
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
742
743
    assert new_g1._idtype_str == index_dtype
    assert new_g2._idtype_str == index_dtype
744
745
746
747
748
749
750
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
751
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=getattr(F, index_dtype)))
752
753
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes}
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
754

755
756
    assert new_g3._idtype_str == index_dtype
    assert new_g4._idtype_str == index_dtype
757
758
759
760
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

761
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU to simple not implemented")
762
763
@parametrize_dtype
def test_to_simple(index_dtype):
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

    # heterogeneous graph
797
    g = dgl.heterograph({
798
799
800
801
802
803
804
805
806
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
        index_dtype=index_dtype)
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
807
808
809
810
811
812

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
813
        eid_map = F.asnumpy(wb[etype])
814
815
816
817
818
819
820
821
822
823
824
825

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
844

845
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU compaction not implemented")
846
847
@parametrize_dtype
def test_to_block(index_dtype):
848
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
849
850
851
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
852
853
854
855
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

873
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
874
875
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
876
            if dst_nodes is not None and ntype in dst_nodes:
877
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
878
            else:
879
                check(g, bg, ntype, etype, None, include_dst_in_src)
880
881
882
883

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
884
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]}, index_dtype=index_dtype)
885
886
887
888
    g_a = g['AA']

    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
889
890
891
892
893
894
895
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
896

897
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype))
898
899
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
900
901
902
903

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
904
    assert bg._idtype_str == index_dtype
905
906
907
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
908
909
    checkall(g_ab, bg, None)

910
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=getattr(F, index_dtype))}
911
    bg = dgl.to_block(g, dst_nodes)
912
    assert bg.number_of_nodes('SRC/B') == 4
913
914
915
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
916

917
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype)), 'B': F.tensor([3, 5, 6, 1], dtype=getattr(F, index_dtype))}
918
919
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
920
921

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
922
923
@parametrize_dtype
def test_remove_edges(index_dtype):
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
942
        assert g1.idtype == g.idtype
943
944
945

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
946
947
            g = dgl.graph([(0, 1), (2, 3), (1, 2), (3, 4)], restrict_format=fmt, index_dtype=index_dtype)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, getattr(F, index_dtype)))
948
949
950
951
            check(g1, None, g, edges_to_remove)

            g = dgl.graph(
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
952
953
                restrict_format=fmt, index_dtype=index_dtype)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, getattr(F, index_dtype)))
954
955
956
957
958
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
959
960
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]}, index_dtype=index_dtype)
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], getattr(F, index_dtype)), 'AB': F.tensor([3], getattr(F, index_dtype)), 'BA': F.tensor([1], getattr(F, index_dtype))})
961
962
963
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
964

965
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], getattr(F, index_dtype)), 'AB': F.tensor([3], getattr(F, index_dtype)), 'BA': F.tensor([1], getattr(F, index_dtype))})
966
967
968
969
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

970
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], getattr(F, index_dtype))})
971
    check(g4, 'AA', g, [])
972
    check(g4, 'AB', g, [3, 1, 2, 0])
973
974
    check(g4, 'BA', g, [])

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def test_cast():
    m = spsp.coo_matrix(([1, 1], ([0, 1], [1, 2])), (4, 4))
    g = dgl.DGLGraph(m, readonly=True)
    gsrc, gdst = g.edges(order='eid')
    ndata = F.randn((4, 5))
    edata = F.randn((2, 4))
    g.ndata['x'] = ndata
    g.edata['y'] = edata

    hg = dgl.as_heterograph(g, 'A', 'AA')
    assert hg.ntypes == ['A']
    assert hg.etypes == ['AA']
    assert hg.canonical_etypes == [('A', 'AA', 'A')]
    assert hg.number_of_nodes() == 4
    assert hg.number_of_edges() == 2
    hgsrc, hgdst = hg.edges(order='eid')
    assert F.array_equal(gsrc, hgsrc)
    assert F.array_equal(gdst, hgdst)

    g2 = dgl.as_immutable_graph(hg)
    assert g2.number_of_nodes() == 4
    assert g2.number_of_edges() == 2
    g2src, g2dst = hg.edges(order='eid')
    assert F.array_equal(g2src, gsrc)
    assert F.array_equal(g2dst, gdst)

1001
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
1002
    test_reorder_nodes()
1003
1004
    # test_line_graph()
    # test_no_backtracking()
1005
    test_reverse()
1006
    # test_reverse_shared_frames()
1007
    test_to_bidirected()
1008
1009
1010
1011
1012
1013
1014
1015
    # test_simple_graph()
    # test_bidirected_graph()
    # test_khop_adj()
    # test_khop_graph()
    # test_laplacian_lambda_max()
    # test_remove_self_loop()
    # test_add_self_loop()
    # test_partition_with_halo()
1016
    # test_metis_partition()
1017
    # test_hetero_linegraph('int32')
1018
    # test_compact()
1019
    test_to_simple("int32")
1020
1021
    # test_in_subgraph("int32")
    # test_out_subgraph()
1022
    # test_to_block("int32")
1023
    # test_remove_edges()