test_mp_dataloader.py 23.4 KB
Newer Older
1
import multiprocessing as mp
Rhett Ying's avatar
Rhett Ying committed
2
3
import os
import tempfile
4
import time
Rhett Ying's avatar
Rhett Ying committed
5

6
import backend as F
Rhett Ying's avatar
Rhett Ying committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import dgl
import numpy as np
import pytest
import torch as th
from dgl.data import CitationGraphDataset
from dgl.distributed import (
    DistDataLoader,
    DistGraph,
    DistGraphServer,
    load_partition,
    partition_graph,
)
from scipy import sparse as spsp
from utils import generate_ip_config, reset_envs

22
23
24
25
26
27
28
29
30

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
Rhett Ying's avatar
Rhett Ying committed
31

32
33
34
35
36
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
Rhett Ying's avatar
Rhett Ying committed
37
38
39
40
                self.g, seeds, fanout, replace=True
            )
            # Then we compact the frontier into a bipartite graph for
            # message passing.
41
42
43
44
45
46
47
48
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


Rhett Ying's avatar
Rhett Ying committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def start_server(
    rank,
    ip_config,
    part_config,
    disable_shared_mem,
    num_clients,
):
    print("server: #clients=" + str(num_clients))
    g = DistGraphServer(
        rank,
        ip_config,
        1,
        num_clients,
        part_config,
        disable_shared_mem=disable_shared_mem,
        graph_format=["csc", "coo"],
    )
66
67
68
    g.start()


Rhett Ying's avatar
Rhett Ying committed
69
70
71
72
73
74
75
76
77
78
def start_dist_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    drop_last,
    orig_nid,
    orig_eid,
    group_id=0,
):
79
80
    import dgl
    import torch as th
Rhett Ying's avatar
Rhett Ying committed
81
82
83

    os.environ["DGL_GROUP_ID"] = str(group_id)
    dgl.distributed.initialize(ip_config)
84
    gpb = None
85
    disable_shared_mem = num_server > 0
86
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
87
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
88
89
90
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
Rhett Ying's avatar
Rhett Ying committed
91
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
92

93
    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
94
        part, _, _, _, _, _, _ = load_partition(part_config, i)
95

96
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
97
98
99
    sampler = NeighborSampler(
        dist_graph, [5, 10], dgl.distributed.sample_neighbors
    )
100

101
102
103
104
105
106
107
108
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
Rhett Ying's avatar
Rhett Ying committed
109
110
            drop_last=drop_last,
        )
111
112
113
114
115

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
116
117
118
            for idx, blocks in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
119
                block = blocks[-1]
Rhett Ying's avatar
Rhett Ying committed
120
                o_src, o_dst = block.edges()
121
122
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
123
124
125
126
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
127
128
129
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id
                )
130
131
                assert np.all(F.asnumpy(has_edges))
            if drop_last:
Rhett Ying's avatar
Rhett Ying committed
132
133
134
135
136
137
                assert (
                    np.max(max_nid)
                    == num_nodes_to_sample
                    - 1
                    - num_nodes_to_sample % batch_size
                )
138
139
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
140
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
141
142
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()
143
144


Rhett Ying's avatar
Rhett Ying committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def test_standalone():
    reset_envs()
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, 1, 1)

        g = CitationGraphDataset("cora")[0]
        print(g.idtype)
        num_parts = 1
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        os.environ["DGL_DIST_MODE"] = "standalone"
        try:
            start_dist_dataloader(
                0, ip_config, part_config, 1, True, orig_nid, orig_eid
            )
        except Exception as e:
            print(e)


def start_dist_neg_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    groundtruth_g,
):
184
185
    import dgl
    import torch as th
Rhett Ying's avatar
Rhett Ying committed
186
187

    dgl.distributed.initialize(ip_config)
188
189
190
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
191
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
192
193
    num_edges_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
194
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
195
196
197
198
199
200
201
202
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
203
        part, _, _, _, _, _, _ = load_partition(part_config, i)
204
205

    num_negs = 5
Rhett Ying's avatar
Rhett Ying committed
206
207
208
209
210
211
212
213
214
215
216
217
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
    negative_sampler = dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.DistEdgeDataLoader(
        dist_graph,
        train_eid,
        sampler,
        batch_size=batch_size,
        negative_sampler=negative_sampler,
        shuffle=True,
        drop_last=False,
        num_workers=num_workers,
    )
218
    for _ in range(2):
Rhett Ying's avatar
Rhett Ying committed
219
220
221
        for _, (_, pos_graph, neg_graph, blocks) in zip(
            range(0, num_edges_to_sample, batch_size), dataloader
        ):
222
223
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
224
                o_src, o_dst = block.edges(etype=etype)
225
226
227
228
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
229
230
231
                has_edges = groundtruth_g.has_edges_between(
                    src_nodes_id, dst_nodes_id, etype=etype
                )
232
                assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
233
234
235
236
237
238
239
240
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID])
                )
                assert np.all(
                    F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                    == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID])
                )
241
242
243
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
Rhett Ying's avatar
Rhett Ying committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def check_neg_dataloader(g, num_server, num_workers):
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
            orig_eid = {g.etypes[0]: orig_eid}

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)
        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []

        p = ctx.Process(
            target=start_dist_neg_dataloader,
            args=(
                0,
                ip_config,
                part_config,
                num_server,
                num_workers,
                orig_nid,
                g,
            ),
        )
302
        p.start()
Rhett Ying's avatar
Rhett Ying committed
303
304
305
306
        ptrainer_list.append(p)

        for p in pserver_list:
            p.join()
307
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
308
309
        for p in ptrainer_list:
            p.join()
310
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
311
312


313
@pytest.mark.parametrize("num_server", [3])
314
@pytest.mark.parametrize("num_workers", [0, 4])
315
@pytest.mark.parametrize("drop_last", [True, False])
316
@pytest.mark.parametrize("num_groups", [1])
317
def test_dist_dataloader(num_server, num_workers, drop_last, num_groups):
318
    reset_envs()
319
320
321
322
    # No multiple partitions on single machine for
    # multiple client groups in case of race condition.
    if num_groups > 1:
        num_server = 1
Rhett Ying's avatar
Rhett Ying committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        g = CitationGraphDataset("cora")[0]
        print(g.idtype)
        num_parts = num_server
        num_hops = 1

        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )

        part_config = os.path.join(test_dir, "test_sampling.json")
        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
356
            p.start()
Rhett Ying's avatar
Rhett Ying committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
            time.sleep(1)
            pserver_list.append(p)

        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []
        num_trainers = 1
        for trainer_id in range(num_trainers):
            for group_id in range(num_groups):
                p = ctx.Process(
                    target=start_dist_dataloader,
                    args=(
                        trainer_id,
                        ip_config,
                        part_config,
                        num_server,
                        drop_last,
                        orig_nid,
                        orig_eid,
                        group_id,
                    ),
                )
                p.start()
                time.sleep(
                    1
                )  # avoid race condition when instantiating DistGraph
                ptrainer_list.append(p)

        for p in ptrainer_list:
            p.join()
387
            assert p.exitcode == 0
388
        for p in pserver_list:
Rhett Ying's avatar
Rhett Ying committed
389
            p.join()
390
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
391
392
393
394
395
396
397
398
399
400
401
402
403


def start_node_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
):
    dgl.distributed.initialize(ip_config)
404
    gpb = None
405
    disable_shared_mem = num_server > 1
406
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
407
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
408
409
    num_nodes_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
410
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
411
412
413
414
415
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
Rhett Ying's avatar
Rhett Ying committed
416
        train_nid = {"n3": th.arange(num_nodes_to_sample)}
417

418
    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
419
        part, _, _, _, _, _, _ = load_partition(part_config, i)
420

421
    # Create sampler
Rhett Ying's avatar
Rhett Ying committed
422
423
424
425
426
427
428
429
430
    sampler = dgl.dataloading.MultiLayerNeighborSampler(
        [
            # test dict for hetero
            {etype: 5 for etype in dist_graph.etypes}
            if len(dist_graph.etypes) > 1
            else 5,
            10,
        ]
    )  # test int for hetero
431
432
433
434

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
435
        dataloader = dgl.dataloading.DistNodeDataLoader(
436
437
438
439
440
441
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
442
443
            num_workers=num_workers,
        )
444
445

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
446
447
448
            for idx, (_, _, blocks) in zip(
                range(0, num_nodes_to_sample, batch_size), dataloader
            ):
449
                block = blocks[-1]
450
                for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
451
                    o_src, o_dst = block.edges(etype=etype)
452
453
454
455
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
456
457
458
                    has_edges = groundtruth_g.has_edges_between(
                        src_nodes_id, dst_nodes_id, etype=etype
                    )
459
                    assert np.all(F.asnumpy(has_edges))
460
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    # this is needed since there's two test here in one process
    dgl.distributed.exit_client()


def start_edge_dataloader(
    rank,
    ip_config,
    part_config,
    num_server,
    num_workers,
    orig_nid,
    orig_eid,
    groundtruth_g,
):
    dgl.distributed.initialize(ip_config)
476
477
478
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
Rhett Ying's avatar
Rhett Ying committed
479
        _, _, _, gpb, _, _, _ = load_partition(part_config, rank)
480
481
    num_edges_to_sample = 202
    batch_size = 32
Rhett Ying's avatar
Rhett Ying committed
482
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=part_config)
483
484
485
486
487
488
489
490
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
Rhett Ying's avatar
Rhett Ying committed
491
        part, _, _, _, _, _, _ = load_partition(part_config, i)
492
493
494

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
495

496
497
498
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
499
        dataloader = dgl.dataloading.DistEdgeDataLoader(
500
501
502
503
504
505
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
Rhett Ying's avatar
Rhett Ying committed
506
507
            num_workers=num_workers,
        )
508
509

        for epoch in range(2):
Rhett Ying's avatar
Rhett Ying committed
510
511
512
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(
                range(0, num_edges_to_sample, batch_size), dataloader
            ):
513
514
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
Rhett Ying's avatar
Rhett Ying committed
515
                    o_src, o_dst = block.edges(etype=etype)
516
517
518
519
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
Rhett Ying's avatar
Rhett Ying committed
520
521
522
                    has_edges = groundtruth_g.has_edges_between(
                        src_nodes_id, dst_nodes_id, etype=etype
                    )
523
                    assert np.all(F.asnumpy(has_edges))
Rhett Ying's avatar
Rhett Ying committed
524
525
526
527
528
529
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(
                            pos_pair_graph.nodes[dst_type].data[dgl.NID]
                        )
                    )
530
    del dataloader
Rhett Ying's avatar
Rhett Ying committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    dgl.distributed.exit_client()


def check_dataloader(g, num_server, num_workers, dataloader_type):
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = "ip_config.txt"
        generate_ip_config(ip_config, num_server, num_server)

        num_parts = num_server
        num_hops = 1
        orig_nid, orig_eid = partition_graph(
            g,
            "test_sampling",
            num_parts,
            test_dir,
            num_hops=num_hops,
            part_method="metis",
            return_mapping=True,
        )
        part_config = os.path.join(test_dir, "test_sampling.json")
        if not isinstance(orig_nid, dict):
            orig_nid = {g.ntypes[0]: orig_nid}
        if not isinstance(orig_eid, dict):
            orig_eid = {g.etypes[0]: orig_eid}

        pserver_list = []
        ctx = mp.get_context("spawn")
        for i in range(num_server):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_server > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            pserver_list.append(p)

        os.environ["DGL_DIST_MODE"] = "distributed"
        os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
        ptrainer_list = []
        if dataloader_type == "node":
            p = ctx.Process(
                target=start_node_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
                ),
            )
            p.start()
            ptrainer_list.append(p)
        elif dataloader_type == "edge":
            p = ctx.Process(
                target=start_edge_dataloader,
                args=(
                    0,
                    ip_config,
                    part_config,
                    num_server,
                    num_workers,
                    orig_nid,
                    orig_eid,
                    g,
                ),
            )
            p.start()
            ptrainer_list.append(p)
        for p in pserver_list:
            p.join()
610
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
611
612
        for p in ptrainer_list:
            p.join()
613
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
614

615

616
def create_random_hetero():
Rhett Ying's avatar
Rhett Ying committed
617
618
    num_nodes = {"n1": 10000, "n2": 10010, "n3": 10020}
    etypes = [("n1", "r1", "n2"), ("n1", "r2", "n3"), ("n2", "r3", "n3")]
619
620
621
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
Rhett Ying's avatar
Rhett Ying committed
622
623
624
625
626
627
628
        arr = spsp.random(
            num_nodes[src_ntype],
            num_nodes[dst_ntype],
            density=0.001,
            format="coo",
            random_state=100,
        )
629
630
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
631
632
    g.nodes["n1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_nodes("n1")), 1)
    g.edges["r1"].data["feat"] = F.unsqueeze(F.arange(0, g.num_edges("r1")), 1)
633
634
    return g

Rhett Ying's avatar
Rhett Ying committed
635

636
637
638
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
Rhett Ying's avatar
Rhett Ying committed
639
def test_dataloader(num_server, num_workers, dataloader_type):
640
    reset_envs()
641
    g = CitationGraphDataset("cora")[0]
Rhett Ying's avatar
Rhett Ying committed
642
    check_dataloader(g, num_server, num_workers, dataloader_type)
643
    g = create_random_hetero()
Rhett Ying's avatar
Rhett Ying committed
644
645
    check_dataloader(g, num_server, num_workers, dataloader_type)

646

647
648
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
Rhett Ying's avatar
Rhett Ying committed
649
def test_neg_dataloader(num_server, num_workers):
650
    reset_envs()
651
    g = CitationGraphDataset("cora")[0]
Rhett Ying's avatar
Rhett Ying committed
652
    check_neg_dataloader(g, num_server, num_workers)
653
    g = create_random_hetero()
Rhett Ying's avatar
Rhett Ying committed
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    check_neg_dataloader(g, num_server, num_workers)


def start_multiple_dataloaders(
    ip_config, part_config, graph_name, orig_g, num_dataloaders, dataloader_type
):
    dgl.distributed.initialize(ip_config)
    dist_g = dgl.distributed.DistGraph(graph_name, part_config=part_config)
    if dataloader_type == "node":
        train_ids = th.arange(orig_g.num_nodes())
        batch_size = orig_g.num_nodes() // 100
    else:
        train_ids = th.arange(orig_g.num_edges())
        batch_size = orig_g.num_edges() // 100
    sampler = dgl.dataloading.NeighborSampler([-1])
    dataloaders = []
    dl_iters = []
    for _ in range(num_dataloaders):
        if dataloader_type == "node":
            dataloader = dgl.dataloading.DistNodeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        else:
            dataloader = dgl.dataloading.DistEdgeDataLoader(
                dist_g, train_ids, sampler, batch_size=batch_size
            )
        dataloaders.append(dataloader)
        dl_iters.append(iter(dataloader))

    # iterate on multiple dataloaders randomly
    while len(dl_iters) > 0:
        next_dl = np.random.choice(len(dl_iters), 1)[0]
        try:
            _ = next(dl_iters[next_dl])
        except StopIteration:
            dl_iters.pop(next_dl)
            del dataloaders[next_dl]

    dgl.distributed.exit_client()


@pytest.mark.parametrize("num_dataloaders", [1, 4])
@pytest.mark.parametrize("num_workers", [0, 1, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
def test_multiple_dist_dataloaders(
    num_dataloaders, num_workers, dataloader_type
):
    reset_envs()
    os.environ["DGL_DIST_MODE"] = "distributed"
    os.environ["DGL_NUM_SAMPLER"] = str(num_workers)
    num_parts = 1
    num_servers = 1
    with tempfile.TemporaryDirectory() as test_dir:
        ip_config = os.path.join(test_dir, "ip_config.txt")
        generate_ip_config(ip_config, num_parts, num_servers)

        orig_g = dgl.rand_graph(1000, 10000)
        graph_name = "test"
        partition_graph(orig_g, graph_name, num_parts, test_dir)
        part_config = os.path.join(test_dir, f"{graph_name}.json")

        p_servers = []
        ctx = mp.get_context("spawn")
        for i in range(num_servers):
            p = ctx.Process(
                target=start_server,
                args=(
                    i,
                    ip_config,
                    part_config,
                    num_servers > 1,
                    num_workers + 1,
                ),
            )
            p.start()
            time.sleep(1)
            p_servers.append(p)

        p_client = ctx.Process(
            target=start_multiple_dataloaders,
            args=(
                ip_config,
                part_config,
                graph_name,
                orig_g,
                num_dataloaders,
                dataloader_type,
            ),
        )
        p_client.start()

        p_client.join()
746
        assert p_client.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
747
748
        for p in p_servers:
            p.join()
749
            assert p.exitcode == 0
Rhett Ying's avatar
Rhett Ying committed
750
    reset_envs()