backward_binary_reduce_impl.h 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/backward_binary_reduce_impl.h
 * \brief Minigun CPU UDFs for bacward binary reduce
 */
#ifndef DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_
#define DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_

#include <minigun/minigun.h>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.h"
14
#include "../csr_interface.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

namespace dgl {
namespace kernel {
namespace cpu {

// Minigun UDF to compute backward binary reduce.
template <int Mode, typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduce {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
30
    const int64_t len = gdata->data_len;
31
32
33
34
35
36
37
38
39
40
41
42
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
43
44
    DType* lhsoff = gdata->lhs_data + lid * D * len;
    DType* rhsoff = gdata->rhs_data + rid * D * len;
45
    DType* outoff = gdata->out_data + oid * D;
46
47
    DType* gradlhsoff = gdata->grad_lhs_data + lid * D * len;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * D * len;
48
49
50
51
    DType* gradoutoff = gdata->grad_out_data + oid * D;
    for (int64_t tx = 0; tx < D; ++tx) {
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
52
      DType e = Functors::Op(lhsoff + tx * len, rhsoff + tx * len, len);
53
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
54
55
56
57
58
59
60
61
62
63

      DType* lhs_base = lhsoff + tx * len;
      DType* rhs_base = rhsoff + tx * len;
      if (Mode == binary_op::kGradBoth) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
          DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
          DType grad = grad_lhs + grad_rhs;
64
#pragma omp atomic
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
          gradlhsoff[tx * len + i] += grad;
        }
      } else if (Mode == binary_op::kGradLhs) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
          gradlhsoff[tx * len + i] += grad_lhs;
        }
      } else if (Mode == binary_op::kGradRhs) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
80
#pragma omp atomic
81
82
          gradrhsoff[tx * len + i] += grad_rhs;
        }
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
      }
    }
  }
};

// Minigun UDF to compute backward binary reduce with broadcasting.
template <int Mode, int NDim,
          typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduceBcast {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
98
    const int64_t len = gdata->data_len;
99
100
101
102
103
104
105
106
107
108
109
110
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
111
112
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len * len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len * len;
113
    DType* outoff = gdata->out_data + oid * gdata->out_len;
114
115
    DType* gradlhsoff = gdata->grad_lhs_data + lid * gdata->out_len * len;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * gdata->out_len * len;
116
117
118
119
120
121
    DType* gradoutoff = gdata->grad_out_data + oid * gdata->out_len;
    int64_t tmp[NDim];  // store unraveled idx.
    for (int64_t tx = 0; tx < gdata->out_len; ++tx) {
      Unravel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride, tmp);
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
122
123
124
125
      DType e = Functors::Op(
        lhsoff + Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride) * len,
        rhsoff + Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride) * len,
        len);
126
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
127
128
129
130
131
132
133
134
135
136
137
138

      DType* lhs_base = lhsoff +
          Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride) * len;
      DType* rhs_base = rhsoff +
          Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride) * len;
      if (Mode == binary_op::kGradBoth) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
          DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
          DType grad = grad_lhs + grad_rhs;
139
#pragma omp atomic
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
          gradlhsoff[tx * len + i] += grad;
        }
      } else if (Mode == binary_op::kGradLhs) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
          gradlhsoff[tx * len + i] += grad_lhs;
        }
      } else if (Mode == binary_op::kGradRhs) {
        for (int64_t i = 0; i < len; ++i) {
          DType lhs = Functors::Read(lhs_base + i);
          DType rhs = Functors::Read(rhs_base + i);
          DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
155
#pragma omp atomic
156
157
          gradrhsoff[tx * len + i] += grad_rhs;
        }
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      }
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct BackwardFunctorsTempl {
  static inline Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    typedef typename OutSelector<Reducer>::Type OutTarget;
    return SwitchSrcDst<OutTarget>::Type::Call(src, edge, dst);
  }
  static inline Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static inline Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
181
182
  static inline DType Op(DType* lhs, DType* rhs, int64_t len) {
    return BinaryOp::Call(lhs, rhs, len);
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  }
  static inline DType Read(DType* addr) {
    return *addr;
  }
  static inline void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static inline Idx GetId(Idx id, Idx* id_map) {
    return *(id_map + id);
  }
  static inline DType BackwardWrite(DType val, DType accum) {
    return Reducer::BackwardCall(val, accum);
  }
  static inline DType BackwardOpLhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardLhs(lhs, rhs, out);
  }
  static inline DType BackwardOpRhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardRhs(lhs, rhs, out);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;

}  // namespace cpu

// Template implementation of BackwardBinaryReduce operator.
template <int XPU, int Mode, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduce(
    const minigun::advance::RuntimeConfig& rtcfg,
214
    const CSRWrapper& graph,
215
216
217
218
219
    BackwardGData<Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
220
221
  auto incsr = graph.GetInCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr.indptr, incsr.indices);
222
223
224
225
226
227
228
229
230
231
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduce<Mode, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
232
    gdata->lhs_mapping = static_cast<Idx*>(incsr.data->data);
233
234
235
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
236
    gdata->rhs_mapping = static_cast<Idx*>(incsr.data->data);
237
238
239
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
240
    gdata->out_mapping = static_cast<Idx*>(incsr.data->data);
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig, BackwardGData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_DEFINE(mode, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduce<XPU,                \
                    mode, IDX, dtype,                           \
                    lhs_tgt, rhs_tgt,                           \
                    op<dtype>, REDUCER<XPU, dtype>>(            \
      const minigun::advance::RuntimeConfig& rtcfg,             \
255
      const CSRWrapper& graph,                                  \
256
257
258
259
260
261
262
263
      BackwardGData<IDX, dtype>* gdata);

// Template implementation of BackwardBinaryReduce with broadcasting operator.
template <int XPU, int Mode, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduceBcast(
    const minigun::advance::RuntimeConfig& rtcfg,
264
    const CSRWrapper& graph,
265
266
267
268
269
    BackwardBcastGData<NDim, Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
270
271
  auto incsr = graph.GetInCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr.indptr, incsr.indices);
272
273
274
275
276
277
278
279
280
281
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduceBcast<Mode, NDim, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
282
    gdata->lhs_mapping = static_cast<Idx*>(incsr.data->data);
283
284
285
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
286
    gdata->rhs_mapping = static_cast<Idx*>(incsr.data->data);
287
288
289
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
290
    gdata->out_mapping = static_cast<Idx*>(incsr.data->data);
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig,
    BackwardBcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_BCAST_DEFINE(mode, ndim, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduceBcast<XPU,                       \
                    mode, ndim, IDX, dtype,                                 \
                    lhs_tgt, rhs_tgt,                                       \
                    op<dtype>, REDUCER<XPU, dtype>>(                        \
      const minigun::advance::RuntimeConfig& rtcfg,                         \
306
      const CSRWrapper& graph,                                              \
307
308
309
310
311
312
      BackwardBcastGData<ndim, IDX, dtype>* gdata);

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_