backward_binary_reduce_impl.h 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/backward_binary_reduce_impl.h
 * \brief Minigun CPU UDFs for bacward binary reduce
 */
#ifndef DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_
#define DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_

#include <minigun/minigun.h>
#include <dgl/immutable_graph.h>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.h"

namespace dgl {
namespace kernel {
namespace cpu {

// Minigun UDF to compute backward binary reduce.
template <int Mode, typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduce {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * D;
    DType* rhsoff = gdata->rhs_data + rid * D;
    DType* outoff = gdata->out_data + oid * D;
    DType* gradlhsoff = gdata->grad_lhs_data + lid * D;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * D;
    DType* gradoutoff = gdata->grad_out_data + oid * D;
    for (int64_t tx = 0; tx < D; ++tx) {
      DType lhs = Functors::Read(lhsoff + tx);
      DType rhs = Functors::Read(rhsoff + tx);
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
      DType e = Functors::Op(lhs, rhs);
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
      if (Mode == binary_op::kGradLhs || Mode == binary_op::kGradBoth) {
        DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
        gradlhsoff[tx] += grad_lhs;
      }
      if (Mode == binary_op::kGradRhs || Mode == binary_op::kGradBoth) {
        DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
#pragma omp atomic
        gradrhsoff[tx] += grad_rhs;
      }
    }
  }
};

// Minigun UDF to compute backward binary reduce with broadcasting.
template <int Mode, int NDim,
          typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduceBcast {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len;
    DType* outoff = gdata->out_data + oid * gdata->out_len;
    DType* gradlhsoff = gdata->grad_lhs_data + lid * gdata->out_len;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * gdata->out_len;
    DType* gradoutoff = gdata->grad_out_data + oid * gdata->out_len;
    int64_t tmp[NDim];  // store unraveled idx.
    for (int64_t tx = 0; tx < gdata->out_len; ++tx) {
      Unravel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride, tmp);
      DType lhs = Functors::Read(lhsoff +
          Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride));
      DType rhs = Functors::Read(rhsoff +
          Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride));
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
      DType e = Functors::Op(lhs, rhs);
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
      if (Mode == binary_op::kGradLhs || Mode == binary_op::kGradBoth) {
        DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
        gradlhsoff[tx] += grad_lhs;
      }
      if (Mode == binary_op::kGradRhs || Mode == binary_op::kGradBoth) {
        DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
#pragma omp atomic
        gradrhsoff[tx] += grad_rhs;
      }
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct BackwardFunctorsTempl {
  static inline Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    typedef typename OutSelector<Reducer>::Type OutTarget;
    return SwitchSrcDst<OutTarget>::Type::Call(src, edge, dst);
  }
  static inline Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static inline Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
  static inline DType Op(DType lhs, DType rhs) {
    return BinaryOp::Call(lhs, rhs);
  }
  static inline DType Read(DType* addr) {
    return *addr;
  }
  static inline void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static inline Idx GetId(Idx id, Idx* id_map) {
    return *(id_map + id);
  }
  static inline DType BackwardWrite(DType val, DType accum) {
    return Reducer::BackwardCall(val, accum);
  }
  static inline DType BackwardOpLhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardLhs(lhs, rhs, out);
  }
  static inline DType BackwardOpRhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardRhs(lhs, rhs, out);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;

}  // namespace cpu

// Template implementation of BackwardBinaryReduce operator.
template <int XPU, int Mode, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduce(
    const minigun::advance::RuntimeConfig& rtcfg,
    const ImmutableGraph* graph,
    BackwardGData<Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
  auto incsr = graph->GetInCSR();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr->indptr(), incsr->indices());
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduce<Mode, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
    gdata->lhs_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
    gdata->rhs_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
    gdata->out_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig, BackwardGData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_DEFINE(mode, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduce<XPU,                \
                    mode, IDX, dtype,                           \
                    lhs_tgt, rhs_tgt,                           \
                    op<dtype>, REDUCER<XPU, dtype>>(            \
      const minigun::advance::RuntimeConfig& rtcfg,             \
      const ImmutableGraph* graph,                              \
      BackwardGData<IDX, dtype>* gdata);

// Template implementation of BackwardBinaryReduce with broadcasting operator.
template <int XPU, int Mode, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduceBcast(
    const minigun::advance::RuntimeConfig& rtcfg,
    const ImmutableGraph* graph,
    BackwardBcastGData<NDim, Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
  auto incsr = graph->GetInCSR();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr->indptr(), incsr->indices());
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduceBcast<Mode, NDim, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
    gdata->lhs_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
    gdata->rhs_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
    gdata->out_mapping = static_cast<Idx*>(incsr->edge_ids()->data);
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig,
    BackwardBcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_BCAST_DEFINE(mode, ndim, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduceBcast<XPU,                       \
                    mode, ndim, IDX, dtype,                                 \
                    lhs_tgt, rhs_tgt,                                       \
                    op<dtype>, REDUCER<XPU, dtype>>(                        \
      const minigun::advance::RuntimeConfig& rtcfg,                         \
      const ImmutableGraph* graph,                                          \
      BackwardBcastGData<ndim, IDX, dtype>* gdata);

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_