backward_binary_reduce_impl.h 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/backward_binary_reduce_impl.h
 * \brief Minigun CPU UDFs for bacward binary reduce
 */
#ifndef DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_
#define DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_

#include <minigun/minigun.h>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.h"
14
#include "../csr_interface.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

namespace dgl {
namespace kernel {
namespace cpu {

// Minigun UDF to compute backward binary reduce.
template <int Mode, typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduce {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardGData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * D;
    DType* rhsoff = gdata->rhs_data + rid * D;
    DType* outoff = gdata->out_data + oid * D;
    DType* gradlhsoff = gdata->grad_lhs_data + lid * D;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * D;
    DType* gradoutoff = gdata->grad_out_data + oid * D;
    for (int64_t tx = 0; tx < D; ++tx) {
      DType lhs = Functors::Read(lhsoff + tx);
      DType rhs = Functors::Read(rhsoff + tx);
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
      DType e = Functors::Op(lhs, rhs);
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
      if (Mode == binary_op::kGradLhs || Mode == binary_op::kGradBoth) {
        DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
        gradlhsoff[tx] += grad_lhs;
      }
      if (Mode == binary_op::kGradRhs || Mode == binary_op::kGradBoth) {
        DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
#pragma omp atomic
        gradrhsoff[tx] += grad_rhs;
      }
    }
  }
};

// Minigun UDF to compute backward binary reduce with broadcasting.
template <int Mode, int NDim,
          typename Idx, typename DType, typename Functors>
struct BackwardBinaryReduceBcast {
  static inline bool CondEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static inline void ApplyEdge(
      Idx src, Idx dst, Idx eid, BackwardBcastGData<NDim, Idx, DType>* gdata) {
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len;
    DType* outoff = gdata->out_data + oid * gdata->out_len;
    DType* gradlhsoff = gdata->grad_lhs_data + lid * gdata->out_len;
    DType* gradrhsoff = gdata->grad_rhs_data + rid * gdata->out_len;
    DType* gradoutoff = gdata->grad_out_data + oid * gdata->out_len;
    int64_t tmp[NDim];  // store unraveled idx.
    for (int64_t tx = 0; tx < gdata->out_len; ++tx) {
      Unravel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride, tmp);
      DType lhs = Functors::Read(lhsoff +
          Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride));
      DType rhs = Functors::Read(rhsoff +
          Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride));
      DType out = Functors::Read(outoff + tx);
      DType grad_out = Functors::Read(gradoutoff + tx);
      DType e = Functors::Op(lhs, rhs);
      DType grad_e = grad_out * Functors::BackwardWrite(e, out);
      if (Mode == binary_op::kGradLhs || Mode == binary_op::kGradBoth) {
        DType grad_lhs = grad_e * Functors::BackwardOpLhs(lhs, rhs, e);
#pragma omp atomic
        gradlhsoff[tx] += grad_lhs;
      }
      if (Mode == binary_op::kGradRhs || Mode == binary_op::kGradBoth) {
        DType grad_rhs = grad_e * Functors::BackwardOpRhs(lhs, rhs, e);
#pragma omp atomic
        gradrhsoff[tx] += grad_rhs;
      }
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct BackwardFunctorsTempl {
  static inline Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    typedef typename OutSelector<Reducer>::Type OutTarget;
    return SwitchSrcDst<OutTarget>::Type::Call(src, edge, dst);
  }
  static inline Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static inline Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
  static inline DType Op(DType lhs, DType rhs) {
    return BinaryOp::Call(lhs, rhs);
  }
  static inline DType Read(DType* addr) {
    return *addr;
  }
  static inline void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static inline Idx GetId(Idx id, Idx* id_map) {
    return *(id_map + id);
  }
  static inline DType BackwardWrite(DType val, DType accum) {
    return Reducer::BackwardCall(val, accum);
  }
  static inline DType BackwardOpLhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardLhs(lhs, rhs, out);
  }
  static inline DType BackwardOpRhs(DType lhs, DType rhs, DType out) {
    return BinaryOp::BackwardRhs(lhs, rhs, out);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;

}  // namespace cpu

// Template implementation of BackwardBinaryReduce operator.
template <int XPU, int Mode, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduce(
    const minigun::advance::RuntimeConfig& rtcfg,
173
    const CSRWrapper& graph,
174
175
176
177
178
    BackwardGData<Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
179
180
  auto incsr = graph.GetInCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr.indptr, incsr.indices);
181
182
183
184
185
186
187
188
189
190
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduce<Mode, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
191
    gdata->lhs_mapping = static_cast<Idx*>(incsr.data->data);
192
193
194
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
195
    gdata->rhs_mapping = static_cast<Idx*>(incsr.data->data);
196
197
198
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
199
    gdata->out_mapping = static_cast<Idx*>(incsr.data->data);
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig, BackwardGData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_DEFINE(mode, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduce<XPU,                \
                    mode, IDX, dtype,                           \
                    lhs_tgt, rhs_tgt,                           \
                    op<dtype>, REDUCER<XPU, dtype>>(            \
      const minigun::advance::RuntimeConfig& rtcfg,             \
214
      const CSRWrapper& graph,                                  \
215
216
217
218
219
220
221
222
      BackwardGData<IDX, dtype>* gdata);

// Template implementation of BackwardBinaryReduce with broadcasting operator.
template <int XPU, int Mode, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBackwardBinaryReduceBcast(
    const minigun::advance::RuntimeConfig& rtcfg,
223
    const CSRWrapper& graph,
224
225
226
227
228
    BackwardBcastGData<NDim, Idx, DType>* gdata) {
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
229
230
  auto incsr = graph.GetInCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr.indptr, incsr.indices);
231
232
233
234
235
236
237
238
239
240
  typedef cpu::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cpu::BackwardBinaryReduceBcast<Mode, NDim, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
241
    gdata->lhs_mapping = static_cast<Idx*>(incsr.data->data);
242
243
244
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
245
    gdata->rhs_mapping = static_cast<Idx*>(incsr.data->data);
246
247
248
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
249
    gdata->out_mapping = static_cast<Idx*>(incsr.data->data);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cpu::AdvanceConfig,
    BackwardBcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_BACKWARD_BCAST_DEFINE(mode, ndim, dtype, lhs_tgt, rhs_tgt, op)  \
  template void CallBackwardBinaryReduceBcast<XPU,                       \
                    mode, ndim, IDX, dtype,                                 \
                    lhs_tgt, rhs_tgt,                                       \
                    op<dtype>, REDUCER<XPU, dtype>>(                        \
      const minigun::advance::RuntimeConfig& rtcfg,                         \
265
      const CSRWrapper& graph,                                              \
266
267
268
269
270
271
      BackwardBcastGData<ndim, IDX, dtype>* gdata);

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CPU_BACKWARD_BINARY_REDUCE_IMPL_H_