test_subgraph.py 27.1 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
import numpy as np
2
3
4
import networkx as nx
import unittest
import scipy.sparse as ssp
5
import pytest
6

7
import dgl
8
import backend as F
9
from test_utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
10
11
12

D = 5

13
def generate_graph(grad=False, add_data=True):
14
    g = dgl.DGLGraph().to(F.ctx())
15
    g.add_nodes(10)
Minjie Wang's avatar
Minjie Wang committed
16
17
18
19
20
21
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
22
23
24
25
26
27
28
29
    if add_data:
        ncol = F.randn((10, D))
        ecol = F.randn((17, D))
        if grad:
            ncol = F.attach_grad(ncol)
            ecol = F.attach_grad(ecol)
        g.ndata['h'] = ncol
        g.edata['l'] = ecol
Minjie Wang's avatar
Minjie Wang committed
30
31
    return g

32
def test_edge_subgraph():
33
34
35
    # Test when the graph has no node data and edge data.
    g = generate_graph(add_data=False)
    eid = [0, 2, 3, 6, 7, 9]
36
37

    # relabel=True
38
    sg = g.edge_subgraph(eid)
39
40
41
42
43
44
45
46
47
    assert F.array_equal(sg.ndata[dgl.NID], F.tensor([0, 2, 4, 5, 1, 9], g.idtype))
    assert F.array_equal(sg.edata[dgl.EID], F.tensor(eid, g.idtype))
    sg.ndata['h'] = F.arange(0, sg.number_of_nodes())
    sg.edata['h'] = F.arange(0, sg.number_of_edges())

    # relabel=False
    sg = g.edge_subgraph(eid, relabel_nodes=False)
    assert g.number_of_nodes() == sg.number_of_nodes()
    assert F.array_equal(sg.edata[dgl.EID], F.tensor(eid, g.idtype))
48
49
50
    sg.ndata['h'] = F.arange(0, sg.number_of_nodes())
    sg.edata['h'] = F.arange(0, sg.number_of_edges())

51
def test_subgraph():
Minjie Wang's avatar
Minjie Wang committed
52
    g = generate_graph()
53
54
    h = g.ndata['h']
    l = g.edata['l']
Minjie Wang's avatar
Minjie Wang committed
55
56
    nid = [0, 2, 3, 6, 7, 9]
    sg = g.subgraph(nid)
57
    eid = {2, 3, 4, 5, 10, 11, 12, 13, 16}
58
59
    assert set(F.asnumpy(sg.edata[dgl.EID])) == eid
    eid = sg.edata[dgl.EID]
60
61
62
    # the subgraph is empty initially except for NID/EID field
    assert len(sg.ndata) == 2
    assert len(sg.edata) == 2
63
    sh = sg.ndata['h']
VoVAllen's avatar
VoVAllen committed
64
    assert F.allclose(F.gather_row(h, F.tensor(nid)), sh)
Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
Minjie Wang's avatar
Minjie Wang committed
69
70
71
72
    0, 2, 2    1
    2, 9, 3    1
    0, 3, 4    1
    3, 9, 5    1
Minjie Wang's avatar
Minjie Wang committed
73
74
75
    0, 4, 6
    4, 9, 7
    0, 5, 8
Minjie Wang's avatar
Minjie Wang committed
76
77
78
79
80
    5, 9, 9       3
    0, 6, 10   1
    6, 9, 11   1  3
    0, 7, 12   1
    7, 9, 13   1  3
Minjie Wang's avatar
Minjie Wang committed
81
    0, 8, 14
Minjie Wang's avatar
Minjie Wang committed
82
83
    8, 9, 15      3
    9, 0, 16   1
Minjie Wang's avatar
Minjie Wang committed
84
    '''
85
    assert F.allclose(F.gather_row(l, eid), sg.edata['l'])
Minjie Wang's avatar
Minjie Wang committed
86
87
    # update the node/edge features on the subgraph should NOT
    # reflect to the parent graph.
88
89
    sg.ndata['h'] = F.zeros((6, D))
    assert F.allclose(h, g.ndata['h'])
Minjie Wang's avatar
Minjie Wang committed
90

91
92
def _test_map_to_subgraph():
    g = dgl.DGLGraph()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
93
94
95
96
97
    g.add_nodes(10)
    g.add_edges(F.arange(0, 9), F.arange(1, 10))
    h = g.subgraph([0, 1, 2, 5, 8])
    v = h.map_to_subgraph_nid([0, 8, 2])
    assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2]))
98
99
100
101
102
103
104
105
106
107

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

108
109
110
111
112
113
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
114
115
    for etype in g.etypes:
        g.edges[etype].data['weight'] = F.randn((g.num_edges(etype),))
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
    _check_subgraph(g, sg1)
156
157
158
159
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                           'plays': F.tensor([False, True, False, False], dtype=F.bool),
                           'wishes': F.tensor([False, True], dtype=F.bool)})
    _check_subgraph(g, sg2)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

@parametrize_dtype
def test_subgraph1(idtype):
    g = create_test_heterograph(idtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], g.idtype))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], g.idtype))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
195
196
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)
197
198
199
200
201

    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
    _check_subgraph(g, sg1)
202
203
204
205
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                           'plays': F.tensor([1], dtype=idtype),
                           'wishes': F.tensor([1], dtype=idtype)})
    _check_subgraph(g, sg2)
206
207
208
209
210

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
211
212
213
214
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
        assert sg.idtype == g.idtype
        assert sg.device == g.device
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], g.idtype))

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], g.idtype))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], g.idtype))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], g.idtype))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
256
257
258
259
260
261
262
263
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    def _check_typed_subgraph1(g, sg):
        assert g.idtype == sg.idtype
        assert g.device == sg.device
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

    sg3 = g.node_type_subgraph(['user', 'game'])
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)

    # Test for restricted format
303
304
305
306
307
308
309
310
311
312
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph(([0, 1], [1, 2])).formats(fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))

313
314
@parametrize_dtype
def test_in_subgraph(idtype):
315
316
317
318
319
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
320
    }, idtype=idtype, num_nodes_dict={'user': 5, 'game': 10, 'coin': 8}).to(F.ctx())
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    subg = dgl.in_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    assert edge_set == {(0,0)}
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}
    assert subg['flips'].number_of_edges() == 0
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, store_ids=False)
    for etype in ['follow', 'play', 'liked-by']:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.in_subgraph(hg, {'user': [0, 1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0),(2,0),(3,0),(0,1),(2,1),(3,1)}

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(2,0),(2,1),(1,0),(0,0)}

    assert subg.num_nodes('user') == 4
    assert subg.num_nodes('game') == 3
    assert subg.num_nodes('coin') == 0
    assert subg.num_edges('flips') == 0
379
380
381

@parametrize_dtype
def test_out_subgraph(idtype):
382
383
384
385
386
    hg = dgl.heterograph({
        ('user', 'follow', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
        ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
        ('game', 'liked-by', 'user'): ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
        ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
387
    }, idtype=idtype).to(F.ctx())
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0),(0,1),(0,2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(0,1),(1,2)}
    assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0),(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v), subg['flips'].edata[dgl.EID])
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.out_subgraph(hg, {'user' : [0,1], 'game' : 0}, store_ids=False)
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.out_subgraph(hg, {'user': [1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v), subg['follow'].edata[dgl.EID])

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v), subg['play'].edata[dgl.EID])

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0,0)}
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v), subg['liked-by'].edata[dgl.EID])

    u, v = subg['flips'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['coin'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1,0)}
    assert F.array_equal(hg['flips'].edge_ids(old_u, old_v), subg['flips'].edata[dgl.EID])
    assert subg.num_nodes('user') == 2
    assert subg.num_nodes('game') == 2
    assert subg.num_nodes('coin') == 1
454
455
456
457
458
459
460

def test_subgraph_message_passing():
    # Unit test for PR #2055
    g = dgl.graph(([0, 1, 2], [2, 3, 4])).to(F.cpu())
    g.ndata['x'] = F.copy_to(F.randn((5, 6)), F.cpu())
    sg = g.subgraph([1, 2, 3]).to(F.ctx())
    sg.update_all(lambda edges: {'x': edges.src['x']}, lambda nodes: {'y': F.sum(nodes.mailbox['x'], 1)})
461
462
463
464
465
466
467
468
469
470
471

@parametrize_dtype
def test_khop_in_subgraph(idtype):
    g = dgl.graph(([1, 1, 2, 3, 4], [0, 2, 0, 4, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
472
    sg, inv = dgl.khop_in_subgraph(g, 0, k=2)
473
474
475
476
477
478
479
480
481
482
483
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1,0), (1,2), (2,0), (3,2)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 1, 2, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
484
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
485
486

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
487
    sg, inv = dgl.khop_in_subgraph(g, [0, 2], k=1)
488
489
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
490
    sg, inv = dgl.khop_in_subgraph(g, F.tensor([0, 2], idtype), k=1)
491
492
493
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
494
    sg, inv = dgl.khop_in_subgraph(g, 1, k=2)
495
496
497
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
498
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
499
500
501
502
503

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
504
    sg, inv = dgl.khop_in_subgraph(g, {'game': 0}, k=2)
505
506
507
508
509
510
511
512
513
514
515
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 1
    assert sg.num_nodes('user') == 2
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
516
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
517
518

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
519
    sg, inv = dgl.khop_in_subgraph(g, {'user': 0}, k=2)
520
521
522
523
524
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
525
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
526
527

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
528
    sg, inv = dgl.khop_in_subgraph(g, {'user': F.tensor([0, 1], idtype), 'game': 0}, k=1)
529
530
531
532
533
534
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
Mufei Li's avatar
Mufei Li committed
535
536
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0, 1], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
537
538
539
540
541
542
543
544
545
546
547

@parametrize_dtype
def test_khop_out_subgraph(idtype):
    g = dgl.graph(([0, 2, 0, 4, 2], [1, 1, 2, 3, 4]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([
        [0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]
    ])
Mufei Li's avatar
Mufei Li committed
548
    sg, inv = dgl.khop_out_subgraph(g, 0, k=2)
549
550
551
552
553
554
555
556
557
558
559
    assert sg.idtype == g.idtype
    u, v = sg.edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,1), (2,1), (0,2), (2,3)}
    assert F.array_equal(sg.edata[dgl.EID], F.tensor([0, 2, 1, 4], dtype=idtype))
    assert F.array_equal(sg.edata['w'], F.tensor([
        [0, 1],
        [4, 5],
        [2, 3],
        [8, 9]
    ]))
Mufei Li's avatar
Mufei Li committed
560
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
561
562

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
563
    sg, inv = dgl.khop_out_subgraph(g, [0, 2], k=1)
564
565
    assert sg.num_edges() == 4

Mufei Li's avatar
Mufei Li committed
566
    sg, inv = dgl.khop_out_subgraph(g, F.tensor([0, 2], idtype), k=1)
567
568
569
    assert sg.num_edges() == 4

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
570
    sg, inv = dgl.khop_out_subgraph(g, 1, k=2)
571
572
573
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == 1
    assert sg.num_edges() == 0
Mufei Li's avatar
Mufei Li committed
574
    assert F.array_equal(F.astype(inv, idtype), F.tensor([0], idtype))
575
576
577
578
579

    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1], [1, 3]),
    }, idtype=idtype, device=F.ctx())
Mufei Li's avatar
Mufei Li committed
580
    sg, inv = dgl.khop_out_subgraph(g, {'user': 0}, k=2)
581
582
583
584
585
586
587
588
589
590
591
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 2
    assert sg.num_nodes('user') == 3
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    u, v = sg['follows'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1), (1, 2)}
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0,0), (1,0), (1,1)}
Mufei Li's avatar
Mufei Li committed
592
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
593
594

    # Test isolated node
Mufei Li's avatar
Mufei Li committed
595
    sg, inv = dgl.khop_out_subgraph(g, {'user': 3}, k=2)
596
597
598
599
600
    assert sg.idtype == idtype
    assert sg.num_nodes('game') == 0
    assert sg.num_nodes('user') == 1
    assert sg.num_edges('follows') == 0
    assert sg.num_edges('plays') == 0
Mufei Li's avatar
Mufei Li committed
601
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
602
603

    # Test multiple nodes
Mufei Li's avatar
Mufei Li committed
604
    sg, inv = dgl.khop_out_subgraph(g, {'user': F.tensor([2], idtype), 'game': 0}, k=1)
605
606
607
608
    assert sg.num_edges('follows') == 0
    u, v = sg['plays'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 1)}
Mufei Li's avatar
Mufei Li committed
609
610
    assert F.array_equal(F.astype(inv['user'], idtype), F.tensor([0], idtype))
    assert F.array_equal(F.astype(inv['game'], idtype), F.tensor([0], idtype))
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
@unittest.skipIf(not F.gpu_ctx(), 'only necessary with GPU')
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="UVA only supported for PyTorch")
@pytest.mark.parametrize(
    'parent_idx_device', [('cpu', F.cpu()), ('cuda', F.cuda()), ('uva', F.cpu()), ('uva', F.cuda())])
@pytest.mark.parametrize('child_device', [F.cpu(), F.cuda()])
def test_subframes(parent_idx_device, child_device):
    parent_device, idx_device = parent_idx_device
    g = dgl.graph((F.tensor([1,2,3], dtype=F.int64), F.tensor([2,3,4], dtype=F.int64)))
    print(g.device)
    g.ndata['x'] = F.randn((5, 4))
    g.edata['a'] = F.randn((3, 6))
    idx = F.tensor([1, 2], dtype=F.int64)
    if parent_device == 'cuda':
        g = g.to(F.cuda())
    elif parent_device == 'uva':
        g = g.to(F.cpu())
        g.create_formats_()
        g.pin_memory_()
    elif parent_device == 'cpu':
        g = g.to(F.cpu())
    idx = F.copy_to(idx, idx_device)
    sg = g.sample_neighbors(idx, 2).to(child_device)
    assert sg.device == sg.ndata['x'].device
    assert sg.device == sg.edata['a'].device
    assert sg.device == child_device
    if parent_device != 'uva':
        sg = g.to(child_device).sample_neighbors(F.copy_to(idx, child_device), 2)
        assert sg.device == sg.ndata['x'].device
        assert sg.device == sg.edata['a'].device
        assert sg.device == child_device
    if parent_device == 'uva':
        g.unpin_memory_()

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
@unittest.skipIf(F._default_context_str != "gpu", reason="UVA only available on GPU")
@pytest.mark.parametrize('device', [F.cpu(), F.cuda()])
@parametrize_dtype
def test_uva_subgraph(idtype, device):
    g = create_test_heterograph(idtype)
    g = g.to(F.cpu())
    g.create_formats_()
    g.pin_memory_()
    indices = {'user': F.copy_to(F.tensor([0], idtype), device)}
    edge_indices = {'follows': F.copy_to(F.tensor([0], idtype), device)}
    assert g.subgraph(indices).device == device
    assert g.edge_subgraph(edge_indices).device == device
    assert g.in_subgraph(indices).device == device
    assert g.out_subgraph(indices).device == device
    if dgl.backend.backend_name != 'tensorflow':
        # (BarclayII) Most of Tensorflow functions somehow do not preserve device: a CPU tensor
        # becomes a GPU tensor after operations such as concat(), unique() or even sin().
        # Not sure what should be the best fix.
        assert g.khop_in_subgraph(indices, 1)[0].device == device
        assert g.khop_out_subgraph(indices, 1)[0].device == device
    assert g.sample_neighbors(indices, 1).device == device
    g.unpin_memory_()

668
if __name__ == '__main__':
669
670
    test_edge_subgraph()
    # test_uva_subgraph(F.int64, F.cpu())