test_mp_dataloader.py 19.4 KB
Newer Older
1
2
3
import dgl
import unittest
import os
4
from scipy import sparse as spsp
5
6
7
8
9
10
11
from dgl.data import CitationGraphDataset
from dgl.distributed import sample_neighbors
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import time
12
from utils import generate_ip_config, reset_envs
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pathlib import Path
from dgl.distributed import DistGraphServer, DistGraph, DistDataLoader
import pytest
import backend as F

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
                self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks


41
def start_server(rank, tmpdir, disable_shared_mem, num_clients, keep_alive=False):
42
43
    import dgl
    print('server: #clients=' + str(num_clients))
44
    g = DistGraphServer(rank, "mp_ip_config.txt", 1, num_clients,
45
                        tmpdir / 'test_sampling.json', disable_shared_mem=disable_shared_mem,
46
                        graph_format=['csc', 'coo'], keep_alive=keep_alive)
47
48
49
    g.start()


50
def start_dist_dataloader(rank, tmpdir, num_server, drop_last, orig_nid, orig_eid, group_id=0):
51
52
    import dgl
    import torch as th
53
    os.environ['DGL_GROUP_ID'] = str(group_id)
54
    dgl.distributed.initialize("mp_ip_config.txt")
55
    gpb = None
56
    disable_shared_mem = num_server > 0
57
    if disable_shared_mem:
58
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
59
60
61
    num_nodes_to_sample = 202
    batch_size = 32
    train_nid = th.arange(num_nodes_to_sample)
62
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
63

64
65
66
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

67
68
69
70
    # Create sampler
    sampler = NeighborSampler(dist_graph, [5, 10],
                              dgl.distributed.sample_neighbors)

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = DistDataLoader(
            dataset=train_nid.numpy(),
            batch_size=batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=False,
            drop_last=drop_last)

        groundtruth_g = CitationGraphDataset("cora")[0]
        max_nid = []

        for epoch in range(2):
            for idx, blocks in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
                o_src, o_dst =  block.edges()
                src_nodes_id = block.srcdata[dgl.NID][o_src]
                dst_nodes_id = block.dstdata[dgl.NID][o_dst]
90
91
92
93
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid[src_nodes_id]
                dst_nodes_id = orig_nid[dst_nodes_id]
94
95
96
97
98
99
100
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id)
                assert np.all(F.asnumpy(has_edges))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
            if drop_last:
                assert np.max(max_nid) == num_nodes_to_sample - 1 - num_nodes_to_sample % batch_size
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
101
102
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
103
104
105
106

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
def test_standalone(tmpdir):
107
    reset_envs()
108
    generate_ip_config("mp_ip_config.txt", 1, 1)
109
110
111
112
113
114

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = 1
    num_hops = 1

115
116
117
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis', reshuffle=True,
                                         return_mapping=True)
118
119

    os.environ['DGL_DIST_MODE'] = 'standalone'
120
    try:
121
        start_dist_dataloader(0, tmpdir, 1, True, orig_nid, orig_eid)
122
123
    except Exception as e:
        print(e)
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def start_dist_neg_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    num_negs = 5
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5,10])
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(num_negs)
    dataloader = dgl.dataloading.EdgeDataLoader(dist_graph,
                                                train_eid,
                                                sampler,
                                                batch_size=batch_size,
                                                negative_sampler=negative_sampler,
                                                shuffle=True,
                                                drop_last=False,
                                                num_workers=num_workers)
    for _ in range(2):
        for _, (_, pos_graph, neg_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                o_src, o_dst =  block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid[src_type][src_nodes_id]
                dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                assert np.all(F.asnumpy(has_edges))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID]))
                assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID]))
                assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()

    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_neg_dataloader(g, tmpdir, num_server, num_workers):
176
    generate_ip_config("mp_ip_config.txt", num_server, num_server)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    num_parts = num_server
    num_hops = 1
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)
    os.environ['DGL_DIST_MODE'] = 'distributed'
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
    ptrainer_list = []

    p = ctx.Process(target=start_dist_neg_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, g))
    p.start()
    ptrainer_list.append(p)

    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()
209
210
211
212

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
213
@pytest.mark.parametrize("num_workers", [0, 4])
214
@pytest.mark.parametrize("drop_last", [True, False])
215
@pytest.mark.parametrize("reshuffle", [True, False])
216
217
@pytest.mark.parametrize("num_groups", [1, 5])
def test_dist_dataloader(tmpdir, num_server, num_workers, drop_last, reshuffle, num_groups):
218
    reset_envs()
219
    generate_ip_config("mp_ip_config.txt", num_server, num_server)
220
221
222
223
224
225

    g = CitationGraphDataset("cora")[0]
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

226
227
228
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=reshuffle, return_mapping=True)
229
230
231

    pserver_list = []
    ctx = mp.get_context('spawn')
232
    keep_alive = num_groups > 1
233
234
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
235
            i, tmpdir, num_server > 1, num_workers+1, keep_alive))
236
237
238
239
        p.start()
        time.sleep(1)
        pserver_list.append(p)

240
    os.environ['DGL_DIST_MODE'] = 'distributed'
241
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
242
243
244
245
246
247
248
249
    ptrainer_list = []
    num_trainers = 1
    for trainer_id in range(num_trainers):
        for group_id in range(num_groups):
            p = ctx.Process(target=start_dist_dataloader, args=(
                trainer_id, tmpdir, num_server, drop_last, orig_nid, orig_eid, group_id))
            p.start()
            ptrainer_list.append(p)
250

251
252
253
254
255
256
257
    for p in ptrainer_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("mp_ip_config.txt", 1)
258
259
260
    for p in pserver_list:
        p.join()

261
def start_node_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
262
263
    import dgl
    import torch as th
264
    dgl.distributed.initialize("mp_ip_config.txt")
265
    gpb = None
266
    disable_shared_mem = num_server > 1
267
    if disable_shared_mem:
268
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
269
270
271
    num_nodes_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
272
273
274
275
276
277
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_nid = th.arange(num_nodes_to_sample)
    else:
        train_nid = {'n3': th.arange(num_nodes_to_sample)}
278

279
280
281
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

282
    # Create sampler
283
284
285
286
    sampler = dgl.dataloading.MultiLayerNeighborSampler([
        # test dict for hetero
        {etype: 5 for etype in dist_graph.etypes} if len(dist_graph.etypes) > 1 else 5,
        10])        # test int for hetero
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.NodeDataLoader(
            dist_graph,
            train_nid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (_, _, blocks) in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
                block = blocks[-1]
303
304
305
306
307
308
309
310
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
311
312
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
313
    dgl.distributed.exit_client() # this is needed since there's two test here in one process
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def start_edge_dataloader(rank, tmpdir, num_server, num_workers, orig_nid, orig_eid, groundtruth_g):
    import dgl
    import torch as th
    dgl.distributed.initialize("mp_ip_config.txt")
    gpb = None
    disable_shared_mem = num_server > 1
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    num_edges_to_sample = 202
    batch_size = 32
    dist_graph = DistGraph("test_mp", gpb=gpb, part_config=tmpdir / 'test_sampling.json')
    assert len(dist_graph.ntypes) == len(groundtruth_g.ntypes)
    assert len(dist_graph.etypes) == len(groundtruth_g.etypes)
    if len(dist_graph.etypes) == 1:
        train_eid = th.arange(num_edges_to_sample)
    else:
        train_eid = {dist_graph.etypes[0]: th.arange(num_edges_to_sample)}

    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)

    # Create sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    # We need to test creating DistDataLoader multiple times.
    for i in range(2):
        # Create DataLoader for constructing blocks
        dataloader = dgl.dataloading.EdgeDataLoader(
            dist_graph,
            train_eid,
            sampler,
            batch_size=batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=num_workers)

        for epoch in range(2):
            for idx, (input_nodes, pos_pair_graph, blocks) in zip(range(0, num_edges_to_sample, batch_size), dataloader):
                block = blocks[-1]
                for src_type, etype, dst_type in block.canonical_etypes:
                    o_src, o_dst =  block.edges(etype=etype)
                    src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                    dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                    src_nodes_id = orig_nid[src_type][src_nodes_id]
                    dst_nodes_id = orig_nid[dst_type][dst_nodes_id]
                    has_edges = groundtruth_g.has_edges_between(src_nodes_id, dst_nodes_id, etype=etype)
                    assert np.all(F.asnumpy(has_edges))
                    assert np.all(F.asnumpy(block.dstnodes[dst_type].data[dgl.NID]) == F.asnumpy(pos_pair_graph.nodes[dst_type].data[dgl.NID]))
                # assert np.all(np.unique(np.sort(F.asnumpy(dst_nodes_id))) == np.arange(idx, batch_size))
    del dataloader
    dgl.distributed.exit_client() # this is needed since there's two test here in one process

def check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type):
368
    generate_ip_config("mp_ip_config.txt", num_server, num_server)
369
370
371

    num_parts = num_server
    num_hops = 1
372
373
374
    orig_nid, orig_eid = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                         num_hops=num_hops, part_method='metis',
                                         reshuffle=True, return_mapping=True)
375
376
377
378
    if not isinstance(orig_nid, dict):
        orig_nid = {g.ntypes[0]: orig_nid}
    if not isinstance(orig_eid, dict):
        orig_eid = {g.etypes[0]: orig_eid}
379
380
381
382
383
384
385
386
387
388
389

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, num_workers+1))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    os.environ['DGL_DIST_MODE'] = 'distributed'
390
    os.environ['DGL_NUM_SAMPLER'] = str(num_workers)
391
392
393
    ptrainer_list = []
    if dataloader_type == 'node':
        p = ctx.Process(target=start_node_dataloader, args=(
394
395
396
397
398
399
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
        p.start()
        ptrainer_list.append(p)
    elif dataloader_type == 'edge':
        p = ctx.Process(target=start_edge_dataloader, args=(
            0, tmpdir, num_server, num_workers, orig_nid, orig_eid, g))
400
401
402
403
404
405
406
        p.start()
        ptrainer_list.append(p)
    for p in pserver_list:
        p.join()
    for p in ptrainer_list:
        p.join()

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def create_random_hetero():
    num_nodes = {'n1': 10000, 'n2': 10010, 'n3': 10020}
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
        arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo',
                          random_state=100)
        edges[etype] = (arr.row, arr.col)
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_nodes('n1')), 1)
    g.edges['r1'].data['feat'] = F.unsqueeze(F.arange(0, g.number_of_edges('r1')), 1)
    return g

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
@pytest.mark.parametrize("dataloader_type", ["node", "edge"])
def test_dataloader(tmpdir, num_server, num_workers, dataloader_type):
429
    reset_envs()
430
431
432
433
434
    g = CitationGraphDataset("cora")[0]
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)
    g = create_random_hetero()
    check_dataloader(g, tmpdir, num_server, num_workers, dataloader_type)

435
436
437
438
439
440
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
@pytest.mark.parametrize("num_server", [3])
@pytest.mark.parametrize("num_workers", [0, 4])
def test_neg_dataloader(tmpdir, num_server, num_workers):
441
    reset_envs()
442
443
444
445
446
    g = CitationGraphDataset("cora")[0]
    check_neg_dataloader(g, tmpdir, num_server, num_workers)
    g = create_random_hetero()
    check_neg_dataloader(g, tmpdir, num_server, num_workers)

447
448
449
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
450
        test_standalone(Path(tmpdirname))
451
452
        test_dataloader(Path(tmpdirname), 3, 4, 'node')
        test_dataloader(Path(tmpdirname), 3, 4, 'edge')
453
        test_neg_dataloader(Path(tmpdirname), 3, 4)
454
455
456
457
458
        for num_groups in [1, 5]:
            test_dist_dataloader(Path(tmpdirname), 3, 0, True, True, num_groups)
            test_dist_dataloader(Path(tmpdirname), 3, 4, True, True, num_groups)
            test_dist_dataloader(Path(tmpdirname), 3, 0, True, False, num_groups)
            test_dist_dataloader(Path(tmpdirname), 3, 4, True, False, num_groups)