test_distributed_sampling.py 31.2 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
6
from dgl.data import WN18Dataset
from dgl.distributed import sample_neighbors, sample_etype_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
7
8
9
10
11
12
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
13
from utils import generate_ip_config, reset_envs
Jinjing Zhou's avatar
Jinjing Zhou committed
14
from pathlib import Path
15
import pytest
16
from scipy import sparse as spsp
17
import random
Jinjing Zhou's avatar
Jinjing Zhou committed
18
19
20
from dgl.distributed import DistGraphServer, DistGraph


21
22
def start_server(rank, tmpdir, disable_shared_mem, graph_name, graph_format=['csc', 'coo'],
                 keep_alive=False):
23
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
24
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem,
25
                        graph_format=graph_format, keep_alive=keep_alive)
Jinjing Zhou's avatar
Jinjing Zhou committed
26
27
28
    g.start()


29
def start_sample_client(rank, tmpdir, disable_shared_mem):
30
31
    gpb = None
    if disable_shared_mem:
32
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
33
    dgl.distributed.initialize("rpc_ip_config.txt")
34
    dist_graph = DistGraph("test_sampling", gpb=gpb)
35
36
37
38
39
    try:
        sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    except Exception as e:
        print(e)
        sampled_graph = None
40
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
41
42
    return sampled_graph

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

def start_sample_client_shuffle(rank, tmpdir, disable_shared_mem, g, num_servers, group_id=0):
    os.environ['DGL_GROUP_ID'] = str(group_id)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64, ctx=F.cpu())
    for i in range(num_servers):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

69
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids, etype=None):
70
71
    gpb = None
    if disable_shared_mem:
72
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
73
    dgl.distributed.initialize("rpc_ip_config.txt")
74
    dist_graph = DistGraph("test_find_edges", gpb=gpb)
75
    try:
76
        u, v = dist_graph.find_edges(eids, etype=etype)
77
78
79
    except Exception as e:
        print(e)
        u, v = None, None
80
81
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def start_get_degrees_client(rank, tmpdir, disable_shared_mem, nids=None):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt", 1)
    dist_graph = DistGraph("test_get_degrees", gpb=gpb)
    try:
        in_deg = dist_graph.in_degrees(nids)
        all_in_deg = dist_graph.in_degrees()
        out_deg = dist_graph.out_degrees(nids)
        all_out_deg = dist_graph.out_degrees()
    except Exception as e:
        print(e)
        in_deg, out_deg, all_in_deg, all_out_deg = None, None, None, None
    dgl.distributed.exit_client()
    return in_deg, out_deg, all_in_deg, all_out_deg

100
def check_rpc_sampling(tmpdir, num_server):
101
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
102
103
104
105
106
107
108
109
110
111
112
113
114

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
115
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
116
117
118
119
        p.start()
        time.sleep(1)
        pserver_list.append(p)

120
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
121
122
123
124
125
126
127
128
129
130
131
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

132
def check_rpc_find_edges_shuffle(tmpdir, num_server):
133
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
134
135
136
137
138

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

139
140
141
    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)
142
143
144
145

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
146
147
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
148
149
150
151
152
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
153
    u, v = g.find_edges(orig_eid[eids])
154
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
155
156
    du = orig_nid[du]
    dv = orig_nid[dv]
157
158
159
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

160
161
162
def create_random_hetero(dense=False, empty=False):
    num_nodes = {'n1': 210, 'n2': 200, 'n3': 220} if dense else \
        {'n1': 1010, 'n2': 1000, 'n3': 1020}
163
164
165
166
    etypes = [('n1', 'r1', 'n2'),
              ('n1', 'r2', 'n3'),
              ('n2', 'r3', 'n3')]
    edges = {}
167
    random.seed(42)
168
169
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
170
171
172
173
        arr = spsp.random(num_nodes[src_ntype] - 10 if empty else num_nodes[src_ntype],
                          num_nodes[dst_ntype] - 10 if empty else num_nodes[dst_ntype],
                          density=0.1 if dense else 0.001,
                          format='coo', random_state=100)
174
        edges[etype] = (arr.row, arr.col)
175
176
177
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu())
    return g
178
179

def check_rpc_hetero_find_edges_shuffle(tmpdir, num_server):
180
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    g = create_random_hetero()
    num_parts = num_server

    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges('r1'), size=100))
    u, v = g.find_edges(orig_eid['r1'][eids], etype='r1')
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids, etype='r1')
    du = orig_nid['n1'][du]
    dv = orig_nid['n2'][dv]
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

206
207
208
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
209
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
210
211
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_find_edges_shuffle(num_server):
212
    reset_envs()
213
214
215
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
216
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), num_server)
217
218
219
        check_rpc_find_edges_shuffle(Path(tmpdirname), num_server)

def check_rpc_get_degree_shuffle(tmpdir, num_server):
220
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_get_degrees', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_get_degrees'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']

    nids = F.tensor(np.random.randint(g.number_of_nodes(), size=100))
    in_degs, out_degs, all_in_degs, all_out_degs = start_get_degrees_client(0, tmpdir, num_server > 1, nids)

    print("Done get_degree")
    for p in pserver_list:
        p.join()

    print('check results')
    assert F.array_equal(g.in_degrees(orig_nid[nids]), in_degs)
    assert F.array_equal(g.in_degrees(orig_nid), all_in_degs)
    assert F.array_equal(g.out_degrees(orig_nid[nids]), out_degs)
    assert F.array_equal(g.out_degrees(orig_nid), all_out_degs)

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
258
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
259
260
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_get_degree_shuffle(num_server):
261
    reset_envs()
262
263
264
265
266
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_get_degree_shuffle(Path(tmpdirname), num_server)

267
268
269
#@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
#@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skip('Only support partition with shuffle')
Jinjing Zhou's avatar
Jinjing Zhou committed
270
def test_rpc_sampling():
271
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
272
    import tempfile
273
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
274
    with tempfile.TemporaryDirectory() as tmpdirname:
275
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
276

277
def check_rpc_sampling_shuffle(tmpdir, num_server, num_groups=1):
278
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
279

Jinjing Zhou's avatar
Jinjing Zhou committed
280
281
282
283
284
285
286
287
288
289
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
290
    keep_alive = num_groups > 1
Jinjing Zhou's avatar
Jinjing Zhou committed
291
    for i in range(num_server):
292
293
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo'], keep_alive))
Jinjing Zhou's avatar
Jinjing Zhou committed
294
295
296
297
        p.start()
        time.sleep(1)
        pserver_list.append(p)

298
299
300
301
302
303
304
305
306
307
308
309
310
311
    pclient_list = []
    num_clients = 1
    for client_id in range(num_clients):
        for group_id in range(num_groups):
            p = ctx.Process(target=start_sample_client_shuffle, args=(client_id, tmpdir, num_server > 1, g, num_server, group_id))
            p.start()
            pclient_list.append(p)
    for p in pclient_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("rpc_ip_config.txt", 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
312
313
314
    for p in pserver_list:
        p.join()

315
def start_hetero_sample_client(rank, tmpdir, disable_shared_mem, nodes):
316
317
318
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
319
    dgl.distributed.initialize("rpc_ip_config.txt")
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_neighbors(dist_graph, nodes, 3)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

336
337
def start_hetero_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
                                     nodes={'n3': [0, 10, 99, 66, 124, 208]}):
338
339
340
341
342
343
344
345
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
346
347
348
349
350
351
352
353
354
355
356

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

357
358
359
360
361
362
363
364
365
366
367
368
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_etype_neighbors(dist_graph, nodes, dgl.ETYPE, fanout)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

369
def check_rpc_hetero_sampling_shuffle(tmpdir, num_server):
370
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

    g = create_random_hetero()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

387
388
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': [0, 10, 99, 66, 124, 208]})
389
390
391
392
    print("Done sampling")
    for p in pserver_list:
        p.join()

393
394
    orig_nid_map = {ntype: F.zeros((g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros((g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
395
396
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))
418
419

        # Check the node Ids and edge Ids.
420
421
422
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
423

424
425
426
427
428
429
430
431
432
433
def get_degrees(g, nids, ntype):
    deg = F.zeros((len(nids),), dtype=F.int64)
    for srctype, etype, dsttype in g.canonical_etypes:
        if srctype == ntype:
            deg += g.out_degrees(u=nids, etype=etype)
        elif dsttype == ntype:
            deg += g.in_degrees(v=nids, etype=etype)
    return deg

def check_rpc_hetero_sampling_empty_shuffle(tmpdir, num_server):
434
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    g = create_random_hetero(empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

463
def check_rpc_hetero_etype_sampling_shuffle(tmpdir, num_server):
464
465
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    g = create_random_hetero(dense=True)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
482
483
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': [0, 10, 99, 66, 124, 208]})
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = block.edges(etype=('n1', 'r2', 'n3'))
    assert len(src) == 18
    src, dst = block.edges(etype=('n2', 'r3', 'n3'))
    assert len(src) == 18

    orig_nid_map = {ntype: F.zeros((g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros((g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

524
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
525
526
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

Jinjing Zhou's avatar
Jinjing Zhou committed
555
556
557
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
558
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
559
560
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
561
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
562
    import tempfile
563
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
564
    with tempfile.TemporaryDirectory() as tmpdirname:
565
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
566
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server, num_groups=5)
567
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server)
568
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), num_server)
569
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server)
570
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
571

572
def check_standalone_sampling(tmpdir, reshuffle):
573
574
575
576
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
577
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
578

579
    os.environ['DGL_DIST_MODE'] = 'standalone'
580
    dgl.distributed.initialize("rpc_ip_config.txt")
581
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
582
583
584
585
586
587
588
589
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
590
    dgl.distributed.exit_client()
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def check_standalone_etype_sampling(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1

    partition_graph(hg, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 10, 99, 66, 1023], dgl.ETYPE, 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == hg.number_of_nodes()
    assert np.all(F.asnumpy(hg.has_edges_between(src, dst)))
    eids = hg.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
    dgl.distributed.exit_client()

def check_standalone_etype_sampling_heterograph(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1
    src, dst = hg.edges()
    new_hg = dgl.heterograph({('paper', 'cite', 'paper'): (src, dst),
                              ('paper', 'cite-by', 'paper'): (dst, src)},
                              {'paper': hg.number_of_nodes()})
    partition_graph(new_hg, 'test_hetero_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_hetero_sampling", part_config=tmpdir / 'test_hetero_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 1, 2, 10, 99, 66, 1023, 1024, 2700, 2701], dgl.ETYPE, 1)
    src, dst = sampled_graph.edges(etype=('paper', 'cite', 'paper'))
    assert len(src) == 10
    src, dst = sampled_graph.edges(etype=('paper', 'cite-by', 'paper'))
    assert len(src) == 10
    assert sampled_graph.number_of_nodes() == new_hg.number_of_nodes()
    dgl.distributed.exit_client()

633
634
635
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
636
    reset_envs()
637
638
639
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
640
641
        check_standalone_sampling(Path(tmpdirname), False)
        check_standalone_sampling(Path(tmpdirname), True)
642

643
644
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
645
    dgl.distributed.initialize("rpc_ip_config.txt")
646
    if disable_shared_mem:
647
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
648
    dist_graph = DistGraph("test_in_subgraph", gpb=gpb)
649
650
651
652
653
    try:
        sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    except Exception as e:
        print(e)
        sampled_graph = None
654
    dgl.distributed.exit_client()
655
656
657
    return sampled_graph


658
def check_rpc_in_subgraph_shuffle(tmpdir, num_server):
659
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
660
661
662
663
664
665

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
666
                    num_hops=1, part_method='metis', reshuffle=True)
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

681

682
683
    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64, ctx=F.cpu())
684
685
686
687
688
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

689
    src, dst = sampled_graph.edges()
690
691
    src = orig_nid[src]
    dst = orig_nid[dst]
692
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
693
694
695
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))

    subg1 = dgl.in_subgraph(g, orig_nid[nodes])
696
697
698
699
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
700
701
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))
702
703
704
705

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
706
    reset_envs()
707
    import tempfile
708
    os.environ['DGL_DIST_MODE'] = 'distributed'
709
    with tempfile.TemporaryDirectory() as tmpdirname:
710
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
711

712
713
714
715
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
def test_standalone_etype_sampling():
716
    reset_envs()
717
718
719
720
721
722
723
724
725
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)

Jinjing Zhou's avatar
Jinjing Zhou committed
726
727
728
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
729
        os.environ['DGL_DIST_MODE'] = 'standalone'
730
731
732
733
734
735
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)

    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)
736
737
        check_standalone_sampling(Path(tmpdirname), True)
        check_standalone_sampling(Path(tmpdirname), False)
738
        os.environ['DGL_DIST_MODE'] = 'distributed'
739
740
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
741
742
        check_rpc_get_degree_shuffle(Path(tmpdirname), 1)
        check_rpc_get_degree_shuffle(Path(tmpdirname), 2)
743
744
        check_rpc_find_edges_shuffle(Path(tmpdirname), 2)
        check_rpc_find_edges_shuffle(Path(tmpdirname), 1)
745
746
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 2)
747
748
749
750
751
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
752
753
754
755
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), 1)