test_checkpointing.py 32.9 KB
Newer Older
1
import torch
2

3
4
import torch.distributed as dist

5
import deepspeed
6
7
from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer
from deepspeed.runtime.zero.stage1 import FP16_DeepSpeedZeroOptimizer_Stage1
8

9
10
from deepspeed.runtime.fp16.fused_optimizer import FP16_Optimizer
from deepspeed.runtime.fp16.unfused_optimizer import FP16_UnfusedOptimizer
11

12
13
14
from deepspeed.runtime.pipe.topology import *
PipeTopo = PipeDataParallelTopology

15
16
from deepspeed.ops.op_builder import FusedLambBuilder, CPUAdamBuilder

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
17
18
from deepspeed.runtime.zero.stage3 import FP16_DeepSpeedZeroOptimizer_Stage3

19
20
21
22
import argparse
import pytest
import json
import os
Jeff Rasley's avatar
Jeff Rasley committed
23
import numbers
24
from common import distributed_test
25
from simple_model import *
26
27


28
29
30
31
32
33
34
35
36
def compare_deepspeed_states(saved_model, loaded_model):
    # These are compared in more depth in other places
    assert hasattr(loaded_model, 'module')

    assert saved_model.csr_tensor_module_names == loaded_model.csr_tensor_module_names
    assert saved_model.skipped_steps == loaded_model.skipped_steps
    assert saved_model.global_steps == loaded_model.global_steps


37
def compare_model_states(saved_model, loaded_model, compare_optimizer=True):
38
39
    compare_deepspeed_states(saved_model, loaded_model)

40
    for p0, p1 in zip(saved_model.module.parameters(), loaded_model.module.parameters()):
41
        assert id(p0) != id(p1), f'Comparing fp16 model state tensor against itself : {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
42
        assert torch.allclose(p0, p1, atol=1e-07), f"FP16 model state {p0} is not equal to {p1}"
43

44
45
46
    if not compare_optimizer:
        return

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
47
48
49
    if FP16_DeepSpeedZeroOptimizer_Stage3 is not None and isinstance(
            saved_model.optimizer,
            FP16_DeepSpeedZeroOptimizer_Stage3):
50
        for p0, p1 in zip(saved_model.optimizer.fp32_partitioned_groups_flat, loaded_model.optimizer.fp32_partitioned_groups_flat):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
51
52
53
            assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer):
54
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
55
            assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
56
            assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"
57

Jeff Rasley's avatar
Jeff Rasley committed
58
59
60
    elif isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer_Stage1):
        for partition0, partition1 in zip(saved_model.optimizer.local_sub_partitions_of_fp32_groups, loaded_model.optimizer.local_sub_partitions_of_fp32_groups):
            for p0, p1 in zip(partition0, partition1):
61
                assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
62
                assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"
Jeff Rasley's avatar
Jeff Rasley committed
63

64
65
    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
66
            assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
67
            assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
68
69
70
71

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
72
                assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
73
                assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
74
75
    elif isinstance(saved_model.optimizer, torch.optim.Optimizer):
        pass
76
    else:
77
78
        assert False, f'Unexpected Optimizer Type: {saved_model.optimizer}'

79

80
81
82
def compare_optimizer_states(saved_model, loaded_model, hidden_dim, fp16=True):
    saved_optimizer = saved_model.optimizer.optimizer if fp16 else saved_model.optimizer
    loaded_optimizer = loaded_model.optimizer.optimizer if fp16 else loaded_model.optimizer
83

84
85
    for state0, state1 in zip(saved_optimizer.state.values(),
                              loaded_optimizer.state.values()):
86
87
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
88
                assert id(s0) != id(s1), f'Comparing optimizer state tensor against itself: {id(s0)} <====> {id(s1)}'
89
90
91
92
93
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


Jeff Rasley's avatar
Jeff Rasley committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def compare_lr_scheduler_states(saved_model, loaded_model):
    assert hasattr(saved_model, 'lr_scheduler')
    assert hasattr(loaded_model, 'lr_scheduler')

    saved_scheduler = saved_model.lr_scheduler
    loaded_scheduler = loaded_model.lr_scheduler

    assert hasattr(saved_scheduler, 'state_dict')
    assert hasattr(loaded_scheduler, 'state_dict')

    saved_sd = saved_scheduler.state_dict()
    loaded_sd = loaded_scheduler.state_dict()

    print(f"saved_sd = {saved_sd}")
    print(f"loaded_sd = {loaded_sd}")

    assert saved_sd.keys() == loaded_sd.keys()

    for state0, state1 in zip(saved_sd.values(), loaded_sd.values()):
        if isinstance(state0, numbers.Number) and isinstance(state1, numbers.Number):
            assert state0 == state1


117
118
119
120
121
122
123
124
125
126
127
128
129
def create_deepspeed_model(args, model, base_optimizer):
    if base_optimizer is None:
        ds_model, _, _, _ = deepspeed.initialize(args=args,
                                                 model=model,
                                                 model_parameters=model.parameters())
    else:
        ds_model, _, _, _ = deepspeed.initialize(args=args,
                                                model=model,
                                                optimizer=base_optimizer)

    return ds_model


Jeff Rasley's avatar
Jeff Rasley committed
130
def checkpoint_correctness_verification(args,
131
                                        models,
132
                                        hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
133
134
                                        tmpdir,
                                        load_optimizer_states=False,
135
                                        load_lr_scheduler_states=False,
136
                                        fp16=True,
137
138
                                        train_batch=False,
                                        base_optimizers=[None,
139
140
                                                         None],
                                        empty_tag=False):
141
    dtype = torch.half if fp16 else torch.float32
142
143
144
145
    ds_model = create_deepspeed_model(args=args,
                                      model=models[0],
                                      base_optimizer=base_optimizers[0])

146
147
148
    data_loader = random_dataloader(model=ds_model,
                                    total_samples=50,
                                    hidden_dim=hidden_dim,
149
150
                                    device=ds_model.device,
                                    dtype=dtype)
151
152
153
154
155
156
157
158
159
160

    if train_batch:
        ds_model.set_dataloader(data_loader)
        for n, batch in enumerate(data_loader):
            loss = ds_model.train_batch()
    else:
        for n, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            ds_model.backward(loss)
            ds_model.step()
161
162
163

    trained_model = ds_model

Jeff Rasley's avatar
Jeff Rasley committed
164
    save_folder = os.path.join(tmpdir, 'saved_checkpoint')
165
    save_tag = None if empty_tag else '1'
166

167
    trained_model.save_checkpoint(save_folder, tag=save_tag)
168

169
170
171
    loaded_model = create_deepspeed_model(args=args,
                                          model=models[1],
                                          base_optimizer=base_optimizers[1])
172
173

    loaded_model.load_checkpoint(save_folder,
174
                                 tag=save_tag,
Jeff Rasley's avatar
Jeff Rasley committed
175
176
                                 load_optimizer_states=load_optimizer_states,
                                 load_lr_scheduler_states=load_lr_scheduler_states)
177

Jeff Rasley's avatar
Jeff Rasley committed
178
    compare_model_states(trained_model, loaded_model)
179

180
    if load_optimizer_states:
181
        compare_optimizer_states(trained_model, loaded_model, hidden_dim, fp16)
Jeff Rasley's avatar
Jeff Rasley committed
182
183
184

    if load_lr_scheduler_states:
        compare_lr_scheduler_states(trained_model, loaded_model)
185
186


187
188
@pytest.mark.skipif(not deepspeed.ops.__compatible_ops__[FusedLambBuilder.NAME],
                    reason="lamb is not compatible")
189
190
191
192
193
194
195
def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
196
                "lr": 0.00015
197
198
            }
        },
199
        "gradient_clipping": 1.0,
200
201
        "fp16": {
            "enabled": True
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
218
219
220
221
222
223
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

224
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
225
226
227

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
228
                                           models,
229
230
                                           hidden_dim,
                                           load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
231
        checkpoint_correctness_verification(args,
232
233
234
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
235
236
237
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
238
                                       models=models,
239
240
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
241

242
    _test_checkpoint_unfused_optimizer(args=args,
243
                                       models=models,
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

270
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
271
272

    @distributed_test(world_size=[2])
273
274
275
276
    def _test_checkpoint_fused_optimizer(args,
                                         models,
                                         hidden_dim,
                                         load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
277
        checkpoint_correctness_verification(args,
278
279
280
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
281
282
283
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
284
                                     models=models,
285
286
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
287

288
    _test_checkpoint_fused_optimizer(args=args,
289
                                     models=models,
290
291
292
293
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
294
295
296
297
298
299
300
301
302
303
304
305
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
306
307
308
309
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
310
def test_checkpoint_zero_optimizer(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
311
312
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
313

314
315
316
317
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
318
            "type": 'Adam',
319
320
321
322
323
324
325
326
327
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
328
329
            "enabled": True,
            "initial_scale_power": 8
330
        },
331
        "wall_clock_breakdown": True,
Jeff Rasley's avatar
Jeff Rasley committed
332
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
333
334
335
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
336
337
338
339
340
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
341
342
343
344
345
    def _test_checkpoint_zero_optimizer(args,
                                        zero_stage,
                                        hidden_dim,
                                        load_optimizer_states):
        if zero_stage == 3:
346
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
347
348
349
350
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
351
        checkpoint_correctness_verification(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
352
353
354
                                            models,
                                            hidden_dim,
                                            tmpdir,
355
356
357
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
358
                                    zero_stage=zero_stage,
359
360
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
Jeff Rasley's avatar
Jeff Rasley committed
361
362


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
363
364
365
366
367
368
369
370
371
372
373
374
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(1,
                           False,
                           "Adam"),
                          (2,
                           False,
                           "Adam"),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
375
376
377
378
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
379
380
381
382
def test_checkpoint_zero_no_optimizer(tmpdir,
                                      zero_stage,
                                      use_cpu_offload,
                                      adam_optimizer):
383
384
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
385

Jeff Rasley's avatar
Jeff Rasley committed
386
387
388
389
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
390
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
391
392
393
394
395
396
397
398
399
400
401
402
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
403
404
405
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
Jeff Rasley's avatar
Jeff Rasley committed
406
407
408
409
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
410
    @distributed_test(world_size=[1])
Jeff Rasley's avatar
Jeff Rasley committed
411
    def _test_checkpoint_zero_no_optimizer(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
412
                                           zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
413
414
                                           hidden_dim,
                                           load_optimizer_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
415
416
417
        if zero_stage == 3:
            global FP16_DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import FP16_DeepSpeedZeroOptimizer_Stage3
418
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
419
420
421
422
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
423
        checkpoint_correctness_verification(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
424
425
426
                                            models,
                                            hidden_dim,
                                            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
427
428
429
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_no_optimizer(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
430
                                       zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
431
432
433
434
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(0,
                           False,
                           'Adam'),
                          (1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
450
451
452
453
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
454
def test_checkpoint_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
455
456
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
457

Jeff Rasley's avatar
Jeff Rasley committed
458
459
460
461
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
462
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
463
464
465
466
467
468
469
470
471
472
473
474
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
475
476
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _test_checkpoint_lr_scheduler(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
492
                                      zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
493
494
495
                                      hidden_dim,
                                      load_optimizer_states,
                                      load_lr_scheduler_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
496
497
498
        if zero_stage == 3:
            global FP16_DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import FP16_DeepSpeedZeroOptimizer_Stage3
499
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
500
501
502
503
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
504
505
        checkpoint_correctness_verification(
            args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
506
507
508
            models,
            hidden_dim,
            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
509
510
511
512
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_lr_scheduler(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
513
                                  zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
514
515
516
517
518
                                  hidden_dim=hidden_dim,
                                  load_optimizer_states=False,
                                  load_lr_scheduler_states=True)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
519
520
521
522
523
524
525
526
527
528
529
530
531
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(0,
                           False,
                           'Adam'),
                          (1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
532
533
534
                          (3,
                           False,
                           'Adam'),
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
535
536
                          (3,
                           True,
537
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
538
def test_checkpoint_no_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
539
540
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
541

Jeff Rasley's avatar
Jeff Rasley committed
542
543
544
545
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
546
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
547
548
549
550
551
552
553
554
            "params": {
                "lr": 1e-5
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
555
556
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
557
558
559
560
561
562
563
564
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
Jeff Rasley's avatar
Jeff Rasley committed
565
        },
Jeff Rasley's avatar
Jeff Rasley committed
566
567
568
569
570
571
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _test_checkpoint_no_lr_scheduler(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
572
                                         zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
573
574
575
                                         hidden_dim,
                                         load_optimizer_states,
                                         load_lr_scheduler_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
576
        if zero_stage == 3:
577
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
578
579
580
581
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
582
583
        checkpoint_correctness_verification(
            args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
584
585
586
            models,
            hidden_dim,
            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
587
588
589
590
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_no_lr_scheduler(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
591
                                     zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
592
593
594
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False,
                                     load_lr_scheduler_states=False)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618


def test_checkpoint_fp32_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": False
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

619
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
620
621

    @distributed_test(world_size=[2])
622
623
624
625
626
627
    def _test_checkpoint_fp32_optimizer(args, models, hidden_dim):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            fp16=False)
628

629
    _test_checkpoint_fp32_optimizer(args=args, models=models, hidden_dim=hidden_dim)
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670


@pytest.mark.parametrize("zero_stage", [0, 1])
def test_checkpoint_pipe_engine(zero_stage, tmpdir, stages=2):
    config_dict = {
        "train_batch_size": 2,
        "train_micro_batch_size_per_gpu": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 1e-5
            }
        },
        "zero_optimization": {
            "stage": zero_stage
        },
        "fp16": {
            "enabled": zero_stage > 0
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        }
    }

    @distributed_test(world_size=4)
    def _test(save_folder, num_stages):
        args = args_from_dict(tmpdir, config_dict)
671
        models = [LinearStackPipe(num_stages=num_stages) for _ in range(2)]
672
        checkpoint_correctness_verification(args=args,
673
674
                                            models=models,
                                            hidden_dim=models[0].hidden_dim,
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
                                            tmpdir=save_folder,
                                            fp16=config_dict['fp16']['enabled'],
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=True,
                                            train_batch=True)

    _test(tmpdir, num_stages=stages)


@pytest.mark.parametrize("base_topo,test_topo",
                         [
                             (PipeTopo(num_pp=1,
                                       num_dp=4),
                              PipeTopo(num_pp=4,
                                       num_dp=1)),
                             (PipeTopo(num_pp=2,
                                       num_dp=2),
                              PipeTopo(num_pp=2,
                                       num_dp=2)),
                             (PipeTopo(num_pp=4,
                                       num_dp=1),
                              PipeTopo(num_pp=2,
                                       num_dp=2)),
                         ])
def test_checkpoint_pipe_module(base_topo, test_topo, tmpdir):
    @distributed_test(world_size=4)
    def _test(base_topo, test_topo, save_folder):
        base_model = LinearStackPipe(topology=base_topo)
        base_model.save_state_dict(save_folder)

        dist.barrier()

        test_model = LinearStackPipe(topology=test_topo)
        test_model.load_state_dir(save_folder)

        # Base and test can have different lengths, so make sure we map from the
        # smaller to larger model
        if len(base_model.forward_funcs) < len(test_model.forward_funcs):
            A = base_model
            B = test_model
        else:
            A = test_model
            B = base_model

        # Compare layers individually since partitions are different
        for idx, A_layer in enumerate(A.forward_funcs):
            if not hasattr(A_layer, 'parameters'):
                # Skip functionals, etc.
                continue

            # Find the corresponding layer in B
            global_idx = idx + A._local_start
            B_local_idx = global_idx - B._local_start
            B_layer = B.forward_funcs[B_local_idx]

            # Compare layer parameters
            for p0, p1 in zip(A_layer.parameters(), B_layer.parameters()):
                assert torch.allclose(p0, p1, atol=1e-07), f"Model state {p0} is not equal to {p1}"

    _test(base_topo, test_topo, save_folder=tmpdir)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773


@pytest.mark.parametrize('zero_stage', [1, 2])
def test_checkpoint_zero_hybrid_optimizer_state(tmpdir, zero_stage):
    config_dict = {
        "train_micro_batch_size_per_gpu": 2,
        "gradient_accumulation_steps": 2,
        "steps_per_print": 1,
        "zero_optimization": {
            "stage": zero_stage
        },
        "zero_allow_untested_optimizer": True,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10
    models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]
    optimizers = [HybridStateOptimizer(model.parameters()) for model in models]

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_hybrid_optimizer_state(args,
                                                     models,
                                                     optimizers,
                                                     hidden_dim):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            base_optimizers=optimizers,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True)

    _test_checkpoint_zero_hybrid_optimizer_state(args=args,
                                                 models=models,
                                                 optimizers=optimizers,
                                                 hidden_dim=hidden_dim)
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818


def test_checkpoint_latest(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)
    models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]

    @distributed_test(world_size=[1])
    def _helper(args, models):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=False,
                                            fp16=False,
                                            empty_tag=True)

    _helper(args, models)


def test_checkpoint_missing_latest(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

819
    model = SimpleModel(hidden_dim)
820
821
822
823
824
825

    @distributed_test(world_size=[1])
    def _helper(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
Jeff Rasley's avatar
Jeff Rasley committed
826
827
        # should be no-op, since latest doesn't exist
        model.load_checkpoint(tmpdir)
828
829

    _helper(args=args, model=model, hidden_dim=hidden_dim)
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849


@pytest.mark.parametrize('valid_mode', ["FAIL", "WARN", "IGNORE"])
def test_checkpoint_unique_tag(tmpdir, valid_mode):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "checkpoint": {
            "tag_validation": valid_mode
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

850
    model = SimpleModel(hidden_dim)
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

    @distributed_test(world_size=[2])
    def _helper(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        if valid_mode == "FAIL":
            with pytest.raises(AssertionError):
                model.save_checkpoint(save_dir=tmpdir,
                                      tag=f"tag-{torch.distributed.get_rank()}")
        else:
            model.save_checkpoint(save_dir=tmpdir,
                                  tag=f"tag-{torch.distributed.get_rank()}")

    _helper(args=args, model=model, hidden_dim=hidden_dim)


def test_checkpoint_unknown_tag_validation(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "checkpoint": {
            "tag_validation": "foo"
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

885
    model = SimpleModel(hidden_dim)
886
887
888
889
890
891
892
893
894

    @distributed_test(world_size=[1])
    def _helper(args, model, hidden_dim):
        with pytest.raises(deepspeed.DeepSpeedConfigError):
            model, _, _,_ = deepspeed.initialize(args=args,
                                                 model=model,
                                                 model_parameters=model.parameters())

    _helper(args=args, model=model, hidden_dim=hidden_dim)