test_checkpointing.py 9.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import torch
import deepspeed
from deepspeed.pt.deepspeed_zero_optimizer import FP16_DeepSpeedZeroOptimizer

from deepspeed.pt.fp16_optimizer import FP16_Optimizer
from deepspeed.pt.fp16_unfused_optimizer import FP16_UnfusedOptimizer

import argparse
import pytest
import json
import os
from common import distributed_test
from simple_model import SimpleModel, random_dataloader, args_from_dict


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def compare_deepspeed_states(saved_model, loaded_model):
    # These are compared in more depth in other places
    assert hasattr(loaded_model, 'module')

    assert saved_model.csr_tensor_module_names == loaded_model.csr_tensor_module_names
    assert saved_model.skipped_steps == loaded_model.skipped_steps
    assert saved_model.global_steps == loaded_model.global_steps


def compare_lr_scheduler_states(saved_model, loaded_model):
    if saved_model.lr_scheduler is None:
        assert loaded_model.lr_scheduler is None
        return

    saved = saved_model.lr_scheduler.state_dict()
    loaded = loaded_model.lr_scheduler.state_dict()
    assert sorted(saved.keys()) == sorted(loaded.keys())
    for key in saved.keys():
        if isinstance(saved[key], torch.Tensor):
            assert torch.equal(saved[key], loaded[key])
        else:
            assert saved[key] == loaded[key]


40
def compare_model_states(saved_model, loaded_model):
41
42
    compare_deepspeed_states(saved_model, loaded_model)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    for p0, p1 in zip(saved_model.module.parameters(), loaded_model.module.parameters()):
        assert torch.allclose(p0,p1,atol=1e-07), f"FP16 model state {p0} is not equal to {p1}"

    if isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer):
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
            assert torch.allclose(p0,p1,atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
            assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
                assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    else:
        assert False, 'Unexpected Optimizer Type'


def compare_optimizer_states(saved_model, loaded_model, hidden_dim):
    compare_model_states(saved_model, loaded_model)

66
67
    assert hasattr(loaded_model, 'optimizer')

68
69
70
71
72
73
74
75
76
    for state0, state1 in zip(saved_model.optimizer.optimizer.state.values(),
                              loaded_model.optimizer.optimizer.state.values()):
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


77
78
def checkpoint_correctness_verification(save_folder,
                                        args,
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
                                        model,
                                        hidden_dim,
                                        load_optimizer_states=True):

    ds_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())
    data_loader = random_dataloader(model=ds_model,
                                    total_samples=50,
                                    hidden_dim=hidden_dim,
                                    device=ds_model.device)
    for n, batch in enumerate(data_loader):
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

    trained_model = ds_model

    save_tag = '1'

    trained_model.save_checkpoint(save_folder, save_tag)

    loaded_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())

    loaded_model.load_checkpoint(save_folder,
                                 save_tag,
                                 load_optimizer_states=load_optimizer_states)

109
110
    compare_lr_scheduler_states(trained_model, loaded_model)

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    if load_optimizer_states:
        compare_optimizer_states(trained_model, loaded_model, hidden_dim)
    else:
        compare_model_states(trained_model, loaded_model)


def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015,
                "max_grad_norm": 1.0
            }
        },
        "fp16": {
            "enabled": True
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
146
147
148
149
150
151
152
153
154
155
156
157
158
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
159
160
        checkpoint_correctness_verification(tmpdir,
                                            args,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_fused_optimizer(args, model, hidden_dim, load_optimizer_states):
201
202
        checkpoint_correctness_verification(tmpdir,
                                            args,
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


def test_checkpoint_zero_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": True
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_optimizer(args, model, hidden_dim, load_optimizer_states):
243
244
        checkpoint_correctness_verification(tmpdir,
                                            args,
245
246
247
248
249
250
251
252
253
254
255
256
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=False)