test_checkpointing.py 7.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import deepspeed
from deepspeed.pt.deepspeed_zero_optimizer import FP16_DeepSpeedZeroOptimizer

from deepspeed.pt.fp16_optimizer import FP16_Optimizer
from deepspeed.pt.fp16_unfused_optimizer import FP16_UnfusedOptimizer

import argparse
import pytest
import json
import os
from common import distributed_test
from simple_model import SimpleModel, random_dataloader, args_from_dict


def compare_model_states(saved_model, loaded_model):
    for p0, p1 in zip(saved_model.module.parameters(), loaded_model.module.parameters()):
        assert torch.allclose(p0,p1,atol=1e-07), f"FP16 model state {p0} is not equal to {p1}"

    if isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer):
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
            assert torch.allclose(p0,p1,atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
            assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
                assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    else:
        assert False, 'Unexpected Optimizer Type'


def compare_optimizer_states(saved_model, loaded_model, hidden_dim):
    compare_model_states(saved_model, loaded_model)

    for state0, state1 in zip(saved_model.optimizer.optimizer.state.values(),
                              loaded_model.optimizer.optimizer.state.values()):
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


def checkpoint_correctness_verification(args,
                                        model,
                                        hidden_dim,
                                        load_optimizer_states=True):

    ds_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())
    data_loader = random_dataloader(model=ds_model,
                                    total_samples=50,
                                    hidden_dim=hidden_dim,
                                    device=ds_model.device)
    for n, batch in enumerate(data_loader):
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

    trained_model = ds_model

    save_folder = 'saved_checkpoint'
    save_tag = '1'

    trained_model.save_checkpoint(save_folder, save_tag)

    loaded_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())

    loaded_model.load_checkpoint(save_folder,
                                 save_tag,
                                 load_optimizer_states=load_optimizer_states)

    if load_optimizer_states:
        compare_optimizer_states(trained_model, loaded_model, hidden_dim)
    else:
        compare_model_states(trained_model, loaded_model)


def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015,
                "max_grad_norm": 1.0
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
        checkpoint_correctness_verification(args,
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_fused_optimizer(args, model, hidden_dim, load_optimizer_states):
        checkpoint_correctness_verification(args,
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


def test_checkpoint_zero_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": True
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_optimizer(args, model, hidden_dim, load_optimizer_states):
        checkpoint_correctness_verification(args,
                                            model,
                                            hidden_dim,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=False)