test_fp16.py 36 KB
Newer Older
aiss's avatar
aiss committed
1
2
import math
from deepspeed.utils import groups
3
import torch
aiss's avatar
aiss committed
4
import torch.distributed as dist
5
6
7
8
9
import deepspeed
import argparse
import pytest
import json
import os
10
from deepspeed.ops.adam import FusedAdam
aiss's avatar
aiss committed
11
from .common import distributed_test
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
12
from deepspeed.ops.op_builder import CPUAdamBuilder
aiss's avatar
aiss committed
13
14
from .simple_model import SimpleModel, SimpleOptimizer, random_dataloader, args_from_dict, create_deepspeed_args, SimpleMoEModel, sequence_dataloader
from .util import required_torch_version
15

16
17
18
19
20
try:
    from apex import amp
    _amp_available = True
except ImportError:
    _amp_available = False
aiss's avatar
aiss committed
21
22
amp_available = pytest.mark.skipif(not _amp_available,
                                   reason="apex/amp is not installed")
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def test_lamb_fp32_grad_clip(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

40
    model = SimpleModel(hidden_dim)
41
42
43

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp32_grad_clip(args, model, hidden_dim):
44
45
46
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
47
48
49
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
50
51
                                        device=model.device,
                                        dtype=torch.float)
52
        for n, batch in enumerate(data_loader):
Jeff Rasley's avatar
Jeff Rasley committed
53
            loss = model(batch[0], batch[1])
54
55
56
57
58
59
            model.backward(loss)
            model.step()

    _test_lamb_fp32_grad_clip(args=args, model=model, hidden_dim=hidden_dim)


60
61
62
63
64
65
66
def test_lamb_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
67
                "lr": 0.00015
68
69
            }
        },
70
        "gradient_clipping": 1.0,
71
72
73
74
        "fp16": {
            "enabled": True
        }
    }
75
    args = args_from_dict(tmpdir, config_dict)
76
77
    hidden_dim = 10

78
    model = SimpleModel(hidden_dim)
79
80
81

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp16_basic(args, model, hidden_dim):
82
83
84
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
85
86
87
88
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
89
90
91
92
93
94
95
96
97
98
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_lamb_fp16_empty_grad(tmpdir):
    config_dict = {
Jeff Rasley's avatar
Jeff Rasley committed
99
        "train_batch_size": 2,
100
101
102
103
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
104
                "lr": 0.00015
105
106
            }
        },
107
        "gradient_clipping": 1.0,
108
109
110
111
        "fp16": {
            "enabled": True
        }
    }
112
    args = args_from_dict(tmpdir, config_dict)
113
114
    hidden_dim = 10

115
    model = SimpleModel(hidden_dim, empty_grad=True)
116

Jeff Rasley's avatar
Jeff Rasley committed
117
    @distributed_test(world_size=[2])
118
    def _test_lamb_fp16_empty_grad(args, model, hidden_dim):
119
120
121
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
122
123
124
125
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
126
127
128
129
130
131
132
133
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


Jeff Rasley's avatar
Jeff Rasley committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def test_adam_fp32_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "fp16": {
            "enabled": False
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

152
    model = SimpleModel(hidden_dim, empty_grad=True)
Jeff Rasley's avatar
Jeff Rasley committed
153
154
155

    @distributed_test(world_size=[2])
    def _test_adam_fp32_empty_grad(args, model, hidden_dim):
156
157
158
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
Jeff Rasley's avatar
Jeff Rasley committed
159
160
161
162
163
164
165
166
167
168
169
170
171
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device,
                                        dtype=torch.float)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_fp32_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


172
173
174
175
176
177
178
179
def test_adamw_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
180
    args = args_from_dict(tmpdir, config_dict)
181
182
    hidden_dim = 10

183
    model = SimpleModel(hidden_dim)
184
185
186
187

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_basic(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
188
189
190
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer)
191
192
193
194
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
195
196
197
198
199
200
201
202
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


aiss's avatar
aiss committed
203
204
205
206
def test_unfused_fp16_optimizer_gradnorm_for_moe(tmpdir, monkeypatch):
    if not required_torch_version():
        pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

207
    config_dict = {
aiss's avatar
aiss committed
208
        "train_batch_size": 2,
209
210
211
212
213
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
aiss's avatar
aiss committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    def mock_unscale_and_clip_grads(total_norm, apply_scale=True):
        torch_norm_tensor = torch.cuda.FloatTensor([total_norm])
        all_gather_results = [
            torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(all_gather_results, torch_norm_tensor)
        assert len(set([x.item() for x in all_gather_results])) == 1
        return 1.0

    @distributed_test(world_size=[2])
    def _test_unfused_fp16_optimizer(args, hidden_dim):
        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        optimizer = torch.optim.AdamW(params=model.parameters())
        engine, optimizer, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer,
                                              dist_init_required=False)
        monkeypatch.setattr(optimizer,
                            'unscale_and_clip_grads',
                            mock_unscale_and_clip_grads)
        data_loader = sequence_dataloader(model=engine,
                                          total_samples=50,
                                          hidden_dim=hidden_dim,
                                          device=engine.device)
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()

    _test_unfused_fp16_optimizer(args=args, hidden_dim=hidden_dim)


def test_fused_fp16_optimizer_gradnorm_for_moe(tmpdir, monkeypatch):
    if not required_torch_version():
        pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    def mock_unscale_and_clip_grads(grads_groups_flat, total_norm, apply_scale=True):
        torch_norm_tensor = torch.cuda.FloatTensor([total_norm])
        all_gather_results = [
            torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(all_gather_results, torch_norm_tensor)
        assert len(set([x.item() for x in all_gather_results])) == 1
        return 1.0

    @distributed_test(world_size=[2])
    def _test_fused_fp16_optimizer(args, hidden_dim):
        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        # optimizer = torch.optim.AdamW(params=model.parameters())
        optimizer = FusedAdam(params=model.parameters())
        engine, optimizer, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer,
                                              dist_init_required=False)
        monkeypatch.setattr(optimizer,
                            'unscale_and_clip_grads',
                            mock_unscale_and_clip_grads)
        data_loader = sequence_dataloader(model=engine,
                                          total_samples=50,
                                          hidden_dim=hidden_dim,
                                          device=engine.device)
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()

    _test_fused_fp16_optimizer(args=args, hidden_dim=hidden_dim)


@pytest.mark.parametrize("fused_lamb_legacy", [(False), (True)])
def test_lamb_optimizer_gradnorm_for_moe(tmpdir, monkeypatch, fused_lamb_legacy: bool):
    if not required_torch_version():
        pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        },
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    def mock_unscale_and_clip_grads(total_norm, apply_scale=True):
        torch_norm_tensor = torch.cuda.FloatTensor([total_norm])
        all_gather_results = [
            torch.zeros_like(torch_norm_tensor) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(all_gather_results, torch_norm_tensor)
        assert len(set([x.item() for x in all_gather_results])) == 1
        return 1.0

    @distributed_test(world_size=[2])
    def _test_lamb_legacy_optimizer_step(args, hidden_dim, fused_lamb_legacy):
        # initialize MoE
        model = SimpleMoEModel(hidden_dim, ep_size=2)
        engine, optimizer, _, _ = deepspeed.initialize(args=args,
                                               model=model,
                                               model_parameters=model.parameters(),
                                               dist_init_required=False)
        monkeypatch.setattr(optimizer,
                            'unscale_and_clip_grads',
                            mock_unscale_and_clip_grads)
        optimizer.fused_lamb_legacy = fused_lamb_legacy
        data_loader = sequence_dataloader(model=engine,
                                          total_samples=50,
                                          hidden_dim=hidden_dim,
                                          device=engine.device)
        for n, batch in enumerate(data_loader):
            loss = engine(batch[0], batch[1])
            engine.backward(loss)
            engine.step()

    _test_lamb_legacy_optimizer_step(args=args,
                                     hidden_dim=hidden_dim,
                                     fused_lamb_legacy=fused_lamb_legacy)


def test_dict_config_adamw_fp16_basic():
    config = {"train_batch_size": 1, "steps_per_print": 1, "fp16": {"enabled": True}}
356
357
358
    args = create_deepspeed_args()
    hidden_dim = 10

359
    model = SimpleModel(hidden_dim)
360
361

    @distributed_test(world_size=[1])
aiss's avatar
aiss committed
362
    def _test_adamw_fp16_basic(args, model, hidden_dim, config):
363
        optimizer = torch.optim.AdamW(params=model.parameters())
364
365
366
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer,
aiss's avatar
aiss committed
367
                                              config=config)
368
369
370
371
372
373
374
375
376
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

aiss's avatar
aiss committed
377
    _test_adamw_fp16_basic(args=args, model=model, hidden_dim=hidden_dim, config=config)
378
379


380
381
382
383
384
385
386
387
def test_adamw_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
388
    args = args_from_dict(tmpdir, config_dict)
389
390
    hidden_dim = 10

aiss's avatar
aiss committed
391
    model = SimpleModel(hidden_dim)
392
393
394
395

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_empty_grad(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
396
397
398
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer)
399
400
401
402
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
403
404
405
406
407
408
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)
409
410


Jeff Rasley's avatar
Jeff Rasley committed
411
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
412
413
414
415
416
417
418
419
420
421
                         [(1,
                           False),
                          (2,
                           False),
                          (2,
                           True),
                          (3,
                           False),
                          (3,
                           True)])
Jeff Rasley's avatar
Jeff Rasley committed
422
def test_adam_fp16_zero_onecycle_compatibility(tmpdir, zero_stage, use_cpu_offload):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
423
424
425
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 16000,
                "cycle_first_stair_count": 8000,
                "decay_step_size": 16000,
                "cycle_min_lr": 1e-06,
                "cycle_max_lr": 3e-05,
                "decay_lr_rate": 1e-07,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        },
        "fp16": {
            "enabled": True
        },
Jeff Rasley's avatar
Jeff Rasley committed
452
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
453
454
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
455
        }
456
    }
Jeff Rasley's avatar
Jeff Rasley committed
457

458
459
460
461
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[1])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
462
463
464
465
466
467
    def _test_adam_fp16_zero_onecycle_compatibility(args, zero_stage, hidden_dim):
        model = SimpleModel(hidden_dim)

        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
468
469
470
471
472
473
474
475
476
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Jeff Rasley's avatar
Jeff Rasley committed
477
    _test_adam_fp16_zero_onecycle_compatibility(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
478
                                                zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
479
                                                hidden_dim=hidden_dim)
480
481


Jeff Rasley's avatar
Jeff Rasley committed
482
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
483
484
485
486
487
488
489
490
491
492
                         [(1,
                           False),
                          (2,
                           False),
                          (2,
                           True),
                          (3,
                           False),
                          (3,
                           True)])
Jeff Rasley's avatar
Jeff Rasley committed
493
def test_zero_static_scale(tmpdir, zero_stage, use_cpu_offload):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
494
495
496
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")

497
    config_dict = {
Jeff Rasley's avatar
Jeff Rasley committed
498
        "train_batch_size": 4,
499
500
501
502
503
504
505
506
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
Jeff Rasley's avatar
Jeff Rasley committed
507
508
            "enabled": True,
            "loss_scale": 138.
509
        },
Jeff Rasley's avatar
Jeff Rasley committed
510
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
511
512
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
513
        }
514
515
516
    }
    args = args_from_dict(tmpdir, config_dict)

Jeff Rasley's avatar
Jeff Rasley committed
517
    @distributed_test(world_size=2)
518
519
520
    def _test_zero_static_scale(args, zero_stage, hidden_dim):
        #making hidden size not divisible by DP for covering this scenario
        hidden_dim = hidden_dim
521
        model = SimpleModel(hidden_dim)
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
522

523
        model, optim, _, _ = deepspeed.initialize(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
524
525
                                            model=model,
                                            model_parameters=model.parameters())
526

Jeff Rasley's avatar
Jeff Rasley committed
527
528
529
530
531
        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
532
        data_loader = random_dataloader(model=model,
Jeff Rasley's avatar
Jeff Rasley committed
533
                                        total_samples=10,
534
535
536
537
538
539
540
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

541
542
543
544
    #test when hidden_dim is not aligned with world size
    _test_zero_static_scale(args=args, zero_stage=zero_stage, hidden_dim=9)
    #test when hidden_dim is aligned with world size
    _test_zero_static_scale(args=args, zero_stage=zero_stage, hidden_dim=10)
545
546


Jeff Rasley's avatar
Jeff Rasley committed
547
def test_zero_static_scale_deprecated_format(tmpdir):
548
549
550
551
552
553
554
555
556
557
558
559
560
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 138.
        },
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
561
562
563
        "zero_optimization": {
            "stage": 1
        }
564
565
566
567
568
569
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=2)
    def _test_zero_static_scale(args):
        hidden_dim = 10
570
        model = SimpleModel(hidden_dim)
571
572
573
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
        data_loader = random_dataloader(model=model,
                                        total_samples=10,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_zero_static_scale(args)
590
591


Jeff Rasley's avatar
Jeff Rasley committed
592
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
593
594
595
596
597
598
599
600
601
602
                         [(1,
                           False),
                          (2,
                           False),
                          (2,
                           True),
                          (3,
                           False),
                          (3,
                           True)])
Jeff Rasley's avatar
Jeff Rasley committed
603
def test_zero_allow_untested_optimizer(tmpdir, zero_stage, use_cpu_offload):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
604
605
606
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")

607
608
609
610
611
612
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True,
        },
Jeff Rasley's avatar
Jeff Rasley committed
613
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
614
615
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
616
        },
617
618
619
620
621
        "zero_allow_untested_optimizer": False
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
622
    def _test_zero_allow_untested_optimizer(args, zero_stage):
623
        hidden_dim = 10
624
        model = SimpleModel(hidden_dim)
625
626
        optimizer = SimpleOptimizer(model.parameters())
        with pytest.raises(AssertionError):
627
628
629
630
            model, optim, _, _ = deepspeed.initialize(args=args,
                                                      model=model,
                                                      optimizer=optimizer,
                                                      model_parameters=model.parameters())
631

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
632
    _test_zero_allow_untested_optimizer(args, zero_stage)
633
634


Jeff Rasley's avatar
Jeff Rasley committed
635
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
636
637
638
639
640
641
642
643
644
645
                         [(1,
                           False),
                          (2,
                           False),
                          (2,
                           True),
                          (3,
                           False),
                          (3,
                           True)])
Jeff Rasley's avatar
Jeff Rasley committed
646
def test_zero_empty_partition(tmpdir, zero_stage, use_cpu_offload):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
647
648
649
650
651
652
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")

    if zero_stage == 3:
        pytest.skip("skip for now")

653
654
655
656
657
658
659
660
661
662
663
664
665
666
    config_dict = {
        "train_micro_batch_size_per_gpu": 1,
        "gradient_accumulation_steps": 1,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
667
            "stage": zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
668
669
670
            "cpu_offload": use_cpu_offload,
            "reduce_bucket_size": 100,
            "allgather_bucket_size": 100
671
672
673
674
675
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[3])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
676
    def _test_zero_empty_partition(args, zero_stage):
677
678
        hidden_dim = 1
        model = SimpleModel(hidden_dim)
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        # Ensure model has 2 parameters, to cause empty partition with DP=3
        assert len(list(model.parameters())) == 2
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())

        # Now make sure things work..
        data_loader = random_dataloader(model=model,
                                        total_samples=1,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
696
    _test_zero_empty_partition(args=args, zero_stage=zero_stage)
697
698


699
@amp_available
700
701
702
703
704
def test_adam_amp_basic(tmpdir):
    config_dict = {"train_batch_size": 1, "steps_per_print": 1, "amp": {"enabled": True}}
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

705
    model = SimpleModel(hidden_dim)
706
707
708
709

    @distributed_test(world_size=[1])
    def _test_adam_amp_basic(args, model, hidden_dim):
        optimizer = torch.optim.Adam(params=model.parameters())
710
711
712
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer)
713
714
715
716
717
718
719
720
721
722
723
724
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_basic(args=args, model=model, hidden_dim=hidden_dim)


725
@amp_available
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def test_lamb_amp_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

744
    model = SimpleModel(hidden_dim)
745
746
747

    @distributed_test(world_size=[1, 2])
    def _test_lamb_amp_basic(args, model, hidden_dim):
748
749
750
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
751
752
753
754
755
756
757
758
759
760
761
762
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_amp_basic(args=args, model=model, hidden_dim=hidden_dim)


763
@amp_available
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def test_adam_amp_o2(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
            "opt_level": "O2"
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

783
    model = SimpleModel(hidden_dim)
784
785
786

    @distributed_test(world_size=[1, 2])
    def _test_adam_amp_o2(args, model, hidden_dim):
787
788
789
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
790
791
792
793
794
795
796
797
798
799
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_o2(args=args, model=model, hidden_dim=hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
800
801


802
@amp_available
Jeff Rasley's avatar
Jeff Rasley committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def test_adam_amp_o2_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
            "opt_level": "O2"
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

822
    model = SimpleModel(hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
823
824
825

    @distributed_test(world_size=[2])
    def _test_adam_amp_o2_empty_grad(args, model, hidden_dim):
826
827
828
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
Jeff Rasley's avatar
Jeff Rasley committed
829
830
831
832
833
834
835
836
837
838
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_o2_empty_grad(args=args, model=model, hidden_dim=hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
839
840
841
842


@pytest.mark.parametrize('zero_stage, optimizer_constructor',
                         [(1,
843
                           FusedAdam),
Jeff Rasley's avatar
Jeff Rasley committed
844
845
846
                          (2,
                           torch.optim.Adam),
                          (2,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
847
848
849
850
                           FusedAdam),
                          (3,
                           torch.optim.Adam),
                          (3,
851
                           FusedAdam)])
Jeff Rasley's avatar
Jeff Rasley committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def test_zero_supported_client_optimizer(tmpdir, zero_stage, optimizer_constructor):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": zero_stage
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[1])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
867
868
869
    def _test_zero_supported_client_optimizer(args, zero_stage, optimizer_constructor):
        model = SimpleModel(hidden_dim)

Jeff Rasley's avatar
Jeff Rasley committed
870
871
        client_optimizer = optimizer_constructor(params=model.parameters())
        model, _, _, _ = deepspeed.initialize(args=args,
872
873
                                              model=model,
                                              optimizer=client_optimizer)
Jeff Rasley's avatar
Jeff Rasley committed
874
875

    _test_zero_supported_client_optimizer(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
876
                                          zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
                                          optimizer_constructor=optimizer_constructor)


def test_zero2_reduce_scatter_off(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "zero_optimization": {
            "stage": 2,
            "contiguous_gradients": True,
            "allgather_bucket_size": 2000000000,
            "reduce_bucket_size": 200000000,
            "overlap_comm": False,
            "reduce_scatter": False
        },
        "fp16": {
            "enabled": True
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

906
    model = SimpleModel(hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
907
908
909

    @distributed_test(world_size=[2])
    def _helper(args, model, hidden_dim):
910
911
912
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
Jeff Rasley's avatar
Jeff Rasley committed
913
914
915
916
917
918
919
920
921
922
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _helper(args=args, model=model, hidden_dim=hidden_dim)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952


@pytest.mark.parametrize('adam_type, torch_impl',
                         [('Adam',
                           True),
                          ('Adam',
                           False),
                          ('AdamW',
                           True),
                          ('AdamW',
                           False)])
def test_fp16_adam_types(tmpdir, adam_type, torch_impl):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 10
        },
        "optimizer": {
            "type": adam_type,
            "torch_adam": torch_impl,
            "params": {
                "lr": 0.00015
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

953
    model = SimpleModel(hidden_dim)
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

    @distributed_test(world_size=[1])
    def _test_fp16_adam_types(args, model, hidden_dim):

        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())

        data_loader = random_dataloader(model=model,
                                        total_samples=10,
                                        hidden_dim=hidden_dim,
                                        device=model.device)

        for _, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_fp16_adam_types(args=args, model=model, hidden_dim=hidden_dim)
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014


def test_zero3_lazyscatter(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 10
        },
        "optimizer": {
            "type": "AdamW",
            "params": {
                "lr": 0.00015
            }
        },
        "zero_optimization": {
            "stage": 3
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[1])
    def _go(args):
        model = SimpleModel(hidden_dim)

        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())

        data_loader = random_dataloader(model=model,
                                        total_samples=10,
                                        hidden_dim=hidden_dim,
                                        device=model.device)

        for _, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _go(args=args)
aiss's avatar
aiss committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049


@pytest.mark.parametrize('stage', [1, 2, 3])
def test_zero_empty_grad(tmpdir, stage):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": stage
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim)

    @distributed_test(world_size=[1])
    def _go(args, model, hidden_dim):
        optimizer = torch.optim.Adam(model.parameters())
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              optimizer=optimizer)
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _go(args=args, model=model, hidden_dim=hidden_dim)