test_fp16.py 6.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import deepspeed
import argparse
import pytest
import json
import os
from common import distributed_test


def create_config_from_dict(tmpdir, config_dict):
    config_path = os.path.join(tmpdir, 'temp_config.json')
    with open(config_path, 'w') as fd:
        json.dump(config_dict, fd)
    return config_path


class SimpleModel(torch.nn.Module):
    def __init__(self, hidden_dim, empty_grad=False):
        super(SimpleModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
        if empty_grad:
            self.layers2 = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim)])
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        hidden_dim = x
        hidden_dim = self.linear(hidden_dim)
        return self.cross_entropy_loss(hidden_dim, y)


def test_temp_config_json(tmpdir):
    config_dict = {
        "train_batch_size": 1,
    }
    config_path = create_config_from_dict(tmpdir, config_dict)
    config_json = json.load(open(config_path, 'r'))
    assert 'train_batch_size' in config_json


def prepare_optimizer_parameters(model):
    param_optimizer = list(model.named_parameters())
    optimizer_grouped_parameters = [{
        'params': [p for n,
                   p in param_optimizer],
        'weight_decay': 0.0
    }]
    return optimizer_grouped_parameters


def get_data_loader(model, total_samples, hidden_dim, device):
    batch_size = model.train_micro_batch_size_per_gpu()
    train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=torch.half)
    train_label = torch.empty(total_samples,
                              dtype=torch.long,
                              device=device).random_(hidden_dim)
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
    return train_loader


def get_args(tmpdir, config_dict):
    config_path = create_config_from_dict(tmpdir, config_dict)
    parser = argparse.ArgumentParser()
    args = parser.parse_args(args='')
    args.deepspeed = True
    args.deepspeed_config = config_path
    args.local_rank = 0
    return args


def test_lamb_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015,
                "max_grad_norm": 1.0
            }
        },
        "fp16": {
            "enabled": True
        }
    }
    args = get_args(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp16_basic(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters(),
                                             dist_init_required=False)
        data_loader = get_data_loader(model=model,
                                      total_samples=50,
                                      hidden_dim=hidden_dim,
                                      device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_lamb_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015,
                "max_grad_norm": 1.0
            }
        },
        "fp16": {
            "enabled": True
        }
    }
    args = get_args(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
    def _test_lamb_fp16_empty_grad(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters(),
                                             dist_init_required=False)
        data_loader = get_data_loader(model=model,
                                      total_samples=50,
                                      hidden_dim=hidden_dim,
                                      device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


def test_adamw_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
    args = get_args(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_basic(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             optimizer=optimizer,
                                             dist_init_required=False)
        data_loader = get_data_loader(model=model,
                                      total_samples=50,
                                      hidden_dim=hidden_dim,
                                      device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_adamw_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
    args = get_args(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_empty_grad(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             optimizer=optimizer,
                                             dist_init_required=False)
        data_loader = get_data_loader(model=model,
                                      total_samples=50,
                                      hidden_dim=hidden_dim,
                                      device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)