test_fp16.py 25.3 KB
Newer Older
1
2
3
4
5
6
import torch
import deepspeed
import argparse
import pytest
import json
import os
7
from deepspeed.ops.adam import FusedAdam
8
from common import distributed_test
9
from simple_model import SimpleModel, SimpleOptimizer, random_dataloader, args_from_dict, create_deepspeed_args
10

11
12
13
14
15
16
try:
    from apex import amp
    _amp_available = True
except ImportError:
    _amp_available = False
amp_available = pytest.mark.skip(_amp_available, reason="apex/amp is not installed")
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def test_lamb_fp32_grad_clip(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp32_grad_clip(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
44
45
                                        device=model.device,
                                        dtype=torch.float)
46
        for n, batch in enumerate(data_loader):
Jeff Rasley's avatar
Jeff Rasley committed
47
            loss = model(batch[0], batch[1])
48
49
50
51
52
53
            model.backward(loss)
            model.step()

    _test_lamb_fp32_grad_clip(args=args, model=model, hidden_dim=hidden_dim)


54
55
56
57
58
59
60
def test_lamb_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
61
                "lr": 0.00015
62
63
            }
        },
64
        "gradient_clipping": 1.0,
65
66
67
68
        "fp16": {
            "enabled": True
        }
    }
69
    args = args_from_dict(tmpdir, config_dict)
70
71
72
73
74
75
76
77
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_fp16_basic(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
78
                                             model_parameters=model.parameters())
79
80
81
82
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
83
84
85
86
87
88
89
90
91
92
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


def test_lamb_fp16_empty_grad(tmpdir):
    config_dict = {
Jeff Rasley's avatar
Jeff Rasley committed
93
        "train_batch_size": 2,
94
95
96
97
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
98
                "lr": 0.00015
99
100
            }
        },
101
        "gradient_clipping": 1.0,
102
103
104
105
        "fp16": {
            "enabled": True
        }
    }
106
    args = args_from_dict(tmpdir, config_dict)
107
108
    hidden_dim = 10

Jeff Rasley's avatar
Jeff Rasley committed
109
    model = SimpleModel(hidden_dim, empty_grad=True, rank=args.local_rank)
110

Jeff Rasley's avatar
Jeff Rasley committed
111
    @distributed_test(world_size=[2])
112
113
114
    def _test_lamb_fp16_empty_grad(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
115
                                             model_parameters=model.parameters())
116
117
118
119
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
120
121
122
123
124
125
126
127
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


Jeff Rasley's avatar
Jeff Rasley committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def test_adam_fp32_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "fp16": {
            "enabled": False
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True, rank=args.local_rank)

    @distributed_test(world_size=[2])
    def _test_adam_fp32_empty_grad(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device,
                                        dtype=torch.float)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_fp32_empty_grad(args=args, model=model, hidden_dim=hidden_dim)


166
167
168
169
170
171
172
173
def test_adamw_fp16_basic(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
174
    args = args_from_dict(tmpdir, config_dict)
175
176
177
178
179
180
181
182
183
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_basic(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
184
                                             optimizer=optimizer)
185
186
187
188
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
189
190
191
192
193
194
195
196
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_basic(args=args, model=model, hidden_dim=hidden_dim)


197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def test_dict_config_adamw_fp16_basic():
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
    args = create_deepspeed_args()
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_basic(args, model, hidden_dim, config_dict):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             optimizer=optimizer,
                                             config_params=config_dict)
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_basic(args=args,
                           model=model,
                           hidden_dim=hidden_dim,
                           config_dict=config_dict)


232
233
234
235
236
237
238
239
def test_adamw_fp16_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
240
    args = args_from_dict(tmpdir, config_dict)
241
242
243
244
245
246
247
248
249
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
    def _test_adamw_fp16_empty_grad(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
250
                                             optimizer=optimizer)
251
252
253
254
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
255
256
257
258
259
260
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adamw_fp16_empty_grad(args=args, model=model, hidden_dim=hidden_dim)
261
262


Jeff Rasley's avatar
Jeff Rasley committed
263
264
265
266
267
268
269
270
271
272
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
                         [
                             (1,
                              False),
                             (2,
                              False),
                             (2,
                              True),
                         ])
def test_adam_fp16_zero_onecycle_compatibility(tmpdir, zero_stage, use_cpu_offload):
273
274
    #if use_cpu_offload and not deepspeed.ops.__installed_ops__['cpu-adam']:
    #    pytest.skip("cpu-adam is not installed")
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 16000,
                "cycle_first_stair_count": 8000,
                "decay_step_size": 16000,
                "cycle_min_lr": 1e-06,
                "cycle_max_lr": 3e-05,
                "decay_lr_rate": 1e-07,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        },
        "fp16": {
            "enabled": True
        },
Jeff Rasley's avatar
Jeff Rasley committed
301
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
302
303
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
304
        }
305
    }
Jeff Rasley's avatar
Jeff Rasley committed
306

307
308
309
310
311
312
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=True)

    @distributed_test(world_size=[1])
Jeff Rasley's avatar
Jeff Rasley committed
313
    def _test_adam_fp16_zero_onecycle_compatibility(args, model, hidden_dim):
314
315
316
317
318
319
320
321
322
323
324
325
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Jeff Rasley's avatar
Jeff Rasley committed
326
327
328
    _test_adam_fp16_zero_onecycle_compatibility(args=args,
                                                model=model,
                                                hidden_dim=hidden_dim)
329
330


Jeff Rasley's avatar
Jeff Rasley committed
331
332
333
334
335
336
337
338
339
340
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
                         [
                             (1,
                              False),
                             (2,
                              False),
                             (2,
                              True),
                         ])
def test_zero_static_scale(tmpdir, zero_stage, use_cpu_offload):
341
342
    #if use_cpu_offload and not deepspeed.ops.__installed_ops__['cpu-adam']:
    #    pytest.skip("cpu-adam is not installed")
343
    config_dict = {
Jeff Rasley's avatar
Jeff Rasley committed
344
        "train_batch_size": 4,
345
346
347
348
349
350
351
352
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
Jeff Rasley's avatar
Jeff Rasley committed
353
354
            "enabled": True,
            "loss_scale": 138.
355
        },
Jeff Rasley's avatar
Jeff Rasley committed
356
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
357
358
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
359
        }
360
361
362
    }
    args = args_from_dict(tmpdir, config_dict)

Jeff Rasley's avatar
Jeff Rasley committed
363
364
365
366
367
368
369
    @distributed_test(world_size=2)
    def _test_zero_static_scale(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        model, optim, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())
370

Jeff Rasley's avatar
Jeff Rasley committed
371
372
373
374
375
        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
376
        data_loader = random_dataloader(model=model,
Jeff Rasley's avatar
Jeff Rasley committed
377
                                        total_samples=10,
378
379
380
381
382
383
384
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

Jeff Rasley's avatar
Jeff Rasley committed
385
    _test_zero_static_scale(args)
386
387


Jeff Rasley's avatar
Jeff Rasley committed
388
def test_zero_static_scale_deprecated_format(tmpdir):
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 138.
        },
        "zero_optimization": True
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=2)
    def _test_zero_static_scale(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        model, optim, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())

        # Ensure the static scaler is configured.
        assert optim.dynamic_loss_scale == False
        assert optim.loss_scaler.loss_scale == 138.

        # Now make sure things work..
        data_loader = random_dataloader(model=model,
                                        total_samples=10,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_zero_static_scale(args)
429
430


Jeff Rasley's avatar
Jeff Rasley committed
431
432
433
434
435
436
437
438
439
440
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
                         [
                             (1,
                              False),
                             (2,
                              False),
                             (2,
                              True),
                         ])
def test_zero_allow_untested_optimizer(tmpdir, zero_stage, use_cpu_offload):
441
442
    #if use_cpu_offload and not deepspeed.ops.__installed_ops__['cpu-adam']:
    #    pytest.skip("cpu-adam is not installed")
443
444
445
446
447
448
    config_dict = {
        "train_batch_size": 4,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True,
        },
Jeff Rasley's avatar
Jeff Rasley committed
449
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
450
451
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
452
        },
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        "zero_allow_untested_optimizer": False
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
    def _test_zero_allow_untested_optimizer(args):
        hidden_dim = 10
        model = SimpleModel(hidden_dim, empty_grad=True)
        optimizer = SimpleOptimizer(model.parameters())
        with pytest.raises(AssertionError):
            model, optim, _,_ = deepspeed.initialize(args=args,
                                                    model=model,
                                                    optimizer=optimizer,
                                                    model_parameters=model.parameters())

    _test_zero_allow_untested_optimizer(args)
469
470


Jeff Rasley's avatar
Jeff Rasley committed
471
472
473
474
475
476
477
478
479
480
@pytest.mark.parametrize('zero_stage, use_cpu_offload',
                         [
                             (1,
                              False),
                             (2,
                              False),
                             (2,
                              True),
                         ])
def test_zero_empty_partition(tmpdir, zero_stage, use_cpu_offload):
481
482
    #if use_cpu_offload and not deepspeed.ops.__installed_ops__['cpu-adam']:
    #    pytest.skip("cpu-adam is not installed")
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    config_dict = {
        "train_micro_batch_size_per_gpu": 1,
        "gradient_accumulation_steps": 1,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
497
            "stage": zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
498
499
500
            "cpu_offload": use_cpu_offload,
            "reduce_bucket_size": 100,
            "allgather_bucket_size": 100
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[3])
    def _test_zero_empty_partition(args):
        hidden_dim = 1
        model = SimpleModel(hidden_dim)
        # Ensure model has 2 parameters, to cause empty partition with DP=3
        assert len(list(model.parameters())) == 2
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())

        # Now make sure things work..
        data_loader = random_dataloader(model=model,
                                        total_samples=1,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_zero_empty_partition(args)
526
527


528
@amp_available
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def test_adam_amp_basic(tmpdir):
    config_dict = {"train_batch_size": 1, "steps_per_print": 1, "amp": {"enabled": True}}
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_adam_amp_basic(args, model, hidden_dim):
        optimizer = torch.optim.Adam(params=model.parameters())
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             optimizer=optimizer)
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_basic(args=args, model=model, hidden_dim=hidden_dim)


554
@amp_available
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def test_lamb_amp_basic(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_lamb_amp_basic(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_lamb_amp_basic(args=args, model=model, hidden_dim=hidden_dim)


592
@amp_available
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def test_adam_amp_o2(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
            "opt_level": "O2"
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1, 2])
    def _test_adam_amp_o2(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_o2(args=args, model=model, hidden_dim=hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
629
630


631
@amp_available
Jeff Rasley's avatar
Jeff Rasley committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
def test_adam_amp_o2_empty_grad(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "amp": {
            "enabled": True,
            "opt_level": "O2"
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False, rank=args.local_rank)

    @distributed_test(world_size=[2])
    def _test_adam_amp_o2_empty_grad(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_adam_amp_o2_empty_grad(args=args, model=model, hidden_dim=hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
668
669
670
671


@pytest.mark.parametrize('zero_stage, optimizer_constructor',
                         [(1,
672
                           FusedAdam),
Jeff Rasley's avatar
Jeff Rasley committed
673
674
675
                          (2,
                           torch.optim.Adam),
                          (2,
676
                           FusedAdam)])
Jeff Rasley's avatar
Jeff Rasley committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
def test_zero_supported_client_optimizer(tmpdir, zero_stage, optimizer_constructor):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": zero_stage
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[1])
    def _test_zero_supported_client_optimizer(args, model, optimizer_constructor):
        client_optimizer = optimizer_constructor(params=model.parameters())
        model, _, _, _ = deepspeed.initialize(args=args,
                                               model=model,
                                               optimizer=client_optimizer)

    _test_zero_supported_client_optimizer(args=args,
                                          model=model,
                                          optimizer_constructor=optimizer_constructor)


def test_zero2_reduce_scatter_off(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "gradient_clipping": 1.0,
        "zero_optimization": {
            "stage": 2,
            "contiguous_gradients": True,
            "allgather_bucket_size": 2000000000,
            "reduce_bucket_size": 200000000,
            "overlap_comm": False,
            "reduce_scatter": False
        },
        "fp16": {
            "enabled": True
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, rank=args.local_rank)

    @distributed_test(world_size=[2])
    def _helper(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _helper(args=args, model=model, hidden_dim=hidden_dim)