test_checkpointing.py 15 KB
Newer Older
1
2
3
import torch
import deepspeed
from deepspeed.pt.deepspeed_zero_optimizer import FP16_DeepSpeedZeroOptimizer
Jeff Rasley's avatar
Jeff Rasley committed
4
from deepspeed.pt.zero_optimizer_stage1 import FP16_DeepSpeedZeroOptimizer_Stage1
5
6
7
8
9
10
11
12

from deepspeed.pt.fp16_optimizer import FP16_Optimizer
from deepspeed.pt.fp16_unfused_optimizer import FP16_UnfusedOptimizer

import argparse
import pytest
import json
import os
Jeff Rasley's avatar
Jeff Rasley committed
13
import numbers
14
15
16
17
from common import distributed_test
from simple_model import SimpleModel, random_dataloader, args_from_dict


18
19
20
21
22
23
24
25
26
def compare_deepspeed_states(saved_model, loaded_model):
    # These are compared in more depth in other places
    assert hasattr(loaded_model, 'module')

    assert saved_model.csr_tensor_module_names == loaded_model.csr_tensor_module_names
    assert saved_model.skipped_steps == loaded_model.skipped_steps
    assert saved_model.global_steps == loaded_model.global_steps


27
def compare_model_states(saved_model, loaded_model):
28
29
    compare_deepspeed_states(saved_model, loaded_model)

30
31
32
33
34
35
36
    for p0, p1 in zip(saved_model.module.parameters(), loaded_model.module.parameters()):
        assert torch.allclose(p0,p1,atol=1e-07), f"FP16 model state {p0} is not equal to {p1}"

    if isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer):
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
            assert torch.allclose(p0,p1,atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

Jeff Rasley's avatar
Jeff Rasley committed
37
38
39
40
41
    elif isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer_Stage1):
        for partition0, partition1 in zip(saved_model.optimizer.local_sub_partitions_of_fp32_groups, loaded_model.optimizer.local_sub_partitions_of_fp32_groups):
            for p0, p1 in zip(partition0, partition1):
                assert torch.allclose(p0,p1,atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
            assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
                assert torch.allclose(p0,p1,atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"

    else:
        assert False, 'Unexpected Optimizer Type'


def compare_optimizer_states(saved_model, loaded_model, hidden_dim):
    for state0, state1 in zip(saved_model.optimizer.optimizer.state.values(),
                              loaded_model.optimizer.optimizer.state.values()):
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


Jeff Rasley's avatar
Jeff Rasley committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def compare_lr_scheduler_states(saved_model, loaded_model):
    assert hasattr(saved_model, 'lr_scheduler')
    assert hasattr(loaded_model, 'lr_scheduler')

    saved_scheduler = saved_model.lr_scheduler
    loaded_scheduler = loaded_model.lr_scheduler

    assert hasattr(saved_scheduler, 'state_dict')
    assert hasattr(loaded_scheduler, 'state_dict')

    saved_sd = saved_scheduler.state_dict()
    loaded_sd = loaded_scheduler.state_dict()

    print(f"saved_sd = {saved_sd}")
    print(f"loaded_sd = {loaded_sd}")

    assert saved_sd.keys() == loaded_sd.keys()

    for state0, state1 in zip(saved_sd.values(), loaded_sd.values()):
        if isinstance(state0, numbers.Number) and isinstance(state1, numbers.Number):
            assert state0 == state1


def checkpoint_correctness_verification(args,
89
90
                                        model,
                                        hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
91
92
93
                                        tmpdir,
                                        load_optimizer_states=False,
                                        load_lr_scheduler_states=False):
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    ds_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())
    data_loader = random_dataloader(model=ds_model,
                                    total_samples=50,
                                    hidden_dim=hidden_dim,
                                    device=ds_model.device)
    for n, batch in enumerate(data_loader):
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

    trained_model = ds_model

Jeff Rasley's avatar
Jeff Rasley committed
109
    save_folder = os.path.join(tmpdir, 'saved_checkpoint')
110
111
112
113
114
115
116
117
118
119
    save_tag = '1'

    trained_model.save_checkpoint(save_folder, save_tag)

    loaded_model, _, _,_ = deepspeed.initialize(args=args,
                                            model=model,
                                            model_parameters=model.parameters())

    loaded_model.load_checkpoint(save_folder,
                                 save_tag,
Jeff Rasley's avatar
Jeff Rasley committed
120
121
                                 load_optimizer_states=load_optimizer_states,
                                 load_lr_scheduler_states=load_lr_scheduler_states)
122

Jeff Rasley's avatar
Jeff Rasley committed
123
    compare_model_states(trained_model, loaded_model)
124

125
126
    if load_optimizer_states:
        compare_optimizer_states(trained_model, loaded_model, hidden_dim)
Jeff Rasley's avatar
Jeff Rasley committed
127
128
129

    if load_lr_scheduler_states:
        compare_lr_scheduler_states(trained_model, loaded_model)
130
131
132
133
134
135
136
137
138


def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
139
                "lr": 0.00015
140
141
            }
        },
142
        "gradient_clipping": 1.0,
143
144
        "fp16": {
            "enabled": True
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
161
162
163
164
165
166
167
168
169
170
171
172
173
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
174
        checkpoint_correctness_verification(args,
175
176
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
177
                                            tmpdir,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_fused_optimizer(args, model, hidden_dim, load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
216
        checkpoint_correctness_verification(args,
217
218
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
219
                                            tmpdir,
220
221
222
223
224
225
226
227
228
229
230
231
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


Jeff Rasley's avatar
Jeff Rasley committed
232
233
@pytest.mark.parametrize("zero_stage", [1, 2])
def test_checkpoint_zero_optimizer(tmpdir, zero_stage):
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
Jeff Rasley's avatar
Jeff Rasley committed
250
251
252
        "zero_optimization": {
            "stage": zero_stage
        },
253
254
255
256
257
258
259
260
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_optimizer(args, model, hidden_dim, load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
261
        checkpoint_correctness_verification(args,
262
263
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
264
                                            tmpdir,
265
266
267
268
269
270
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
Jeff Rasley's avatar
Jeff Rasley committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422


@pytest.mark.parametrize("zero_stage", [1, 2])
def test_checkpoint_zero_no_optimizer(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": zero_stage
        },
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_no_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
        checkpoint_correctness_verification(args,
                                            model,
                                            hidden_dim,
                                            tmpdir,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_no_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


@pytest.mark.parametrize("zero_stage", [0, 1, 2])
def test_checkpoint_lr_scheduler(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": zero_stage
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_lr_scheduler(args,
                                      model,
                                      hidden_dim,
                                      load_optimizer_states,
                                      load_lr_scheduler_states):
        checkpoint_correctness_verification(
            args,
            model,
            hidden_dim,
            tmpdir,
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_lr_scheduler(args=args,
                                  model=model,
                                  hidden_dim=hidden_dim,
                                  load_optimizer_states=False,
                                  load_lr_scheduler_states=True)


@pytest.mark.parametrize("zero_stage", [0, 1, 2])
def test_checkpoint_no_lr_scheduler(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 1e-5
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
            "stage": zero_stage
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_no_lr_scheduler(args,
                                         model,
                                         hidden_dim,
                                         load_optimizer_states,
                                         load_lr_scheduler_states):
        checkpoint_correctness_verification(
            args,
            model,
            hidden_dim,
            tmpdir,
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_no_lr_scheduler(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False,
                                     load_lr_scheduler_states=False)